Skip to main content
Log in

Compromised mitochondrial function results in dephosphorylation of tau through a calcium-dependent process in rat brain cerebral cortical slices

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mitochondria play an important role in modulating intracellular levels of calcium, and therefore compromised mitochondrial function often leads to disruptions in calcium homeostasis. In this study, the effects of two uncouplers of oxidative phosphorylation, carbonyl cyanide-3-chlorophenylhydrazone (CCCP) and p-trifluoromethoxyphenylhydrazone (FCCP), on calcium-mediated modifications of the microtubule-associated protein, tau, in rat brain slices were examined. Incubation of slices with CCCP or FCCP resulted in an increase in electrophoretic mobility of several of the tau isoforms, with no apparent loss of intact tau or the appearance of degradation products. These data indicated that disrupting mitochondrial function by dissipating the transmembrane potential resulted in the dephosphorylation of tau. This finding was confirmed by using a front phosphorylation assay to demonstrate a CCCP-induced decrease in the phosphorylation state of tau. The dephosphorylation of tau induced by the proton-ionophores appeared to be calcium-dependent since the effect was blocked by EGTA. In addition, the CCCP-induced dephosphorylation of tau was blocked by cyclosporin A, a selective inhibitor of the calcium-dependent phosphatase, calcineurin. These data strongly indicate that tau is a substrate for calcineurin in vivo. Finally, the levels of ATP were depleted to a similar extent in brain slices incubated in the presence of CCCP or CCCP and EGTA. These results demonstrated depletion of ATP alone was not sufficient to stimulate the dephosphorylation of tau in this experimental paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elliott, E., Mattson, M., Vanderklish, P., Lynch, G., Chang, I., and Sapolsky, R. 1993. Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysisin vivo. J. Neurochem. 61:57–67.

    PubMed  Google Scholar 

  2. Saito, K., Elce, J., Hamos, J., and Nixon, R. 1993. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: A potential molecular basis for neuronal degeneration. Proc. Natl. Acad. Sci. 90:2628–2632.

    PubMed  Google Scholar 

  3. Mattson, M. 1992. Calcium as sculptor and destroyer of neural circuitry. Exp. Geron. 27:29–49.

    Google Scholar 

  4. Nicotera, P., Bellomo, G., and Orrenius, S. 1992. Calcium-mediated mechanisms in chemically induced cell death. Ann. Rev. Pharmacol. Toxicol. 32:449–70.

    Google Scholar 

  5. Carafoli, E. 1987. Intracellular calcium homeostasis. Ann. Rev. Biochem. 56:395–433.

    PubMed  Google Scholar 

  6. Martinez-Serrano, A., and Satrustegui, J. 1992. Regulation of cytosolic free calcium concentration by intrasynaptic mitochondria. Mol. Biol. Cell. 3:235–248.

    PubMed  Google Scholar 

  7. Mattson, M., Zhang, Y., and Bose, S. 1993. Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp. Neurol. 121:1–13.

    PubMed  Google Scholar 

  8. Bellomo, G., Fulceri, R., Albano, E., Gamberucci, A., Pompella, A., et al. 1991. Calcium-dependent and independent mitochondrial damage in hepatocellular injury. Cell Calcium 12:335–41.

    PubMed  Google Scholar 

  9. Maro, B., and Bornens, M. 1982. Reorganization of HeLa cell cytoskeleton induced by an uncoupler of oxidative phosphorylation. Nature 295:334–336.

    PubMed  Google Scholar 

  10. Klymkowski, M. 1988. Metabolic inhibitors and intermediate filament organization in human fibroblasts. Exp. Cell Res. 174:282–290.

    PubMed  Google Scholar 

  11. Drubin, D., and Kirschner, M. 1986. Tau protein function in living cells. J. Cell Biol. 103:2739–2746.

    PubMed  Google Scholar 

  12. Kosik, K., and Caceres, A. 1991. Tau protein and the establishment of an axonal morphology. J. Cell Sci. 15:69–74.

    Google Scholar 

  13. Kosik, K., Joachim, C., and Selkoe, D. 1986. Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 83:4044–4048.

    PubMed  Google Scholar 

  14. Blass, J., Baker, A., Ko, L., and Black, R. 1990. Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation. Arch. Neurol. 47:864–869.

    PubMed  Google Scholar 

  15. Love, S., Quiyada, S., Cole, E., and Terry, R. 1988. Alz-50, ubiquitin, and tau immunoreactivity of neurofibrillary tangles, Pick bodies and Lewy bodies. J. Neuropathol. Exp. Neurol. 47:393–405.

    PubMed  Google Scholar 

  16. Goedert, M., Spillantini, M., and Jakes, R. 1991. Localization of the Alz-50 epitope in recombinant human microtubule-associated protein tau. Neurosci. Lett. 126:149–154.

    PubMed  Google Scholar 

  17. Wallace, D. 1992. Mitochondrial Genetics: A paradigm for aging and degenerative diseases? Science 256:628–632.

    PubMed  Google Scholar 

  18. Lin, F., Lin, R., Wisniewski, H., Hwang, Y., Grundke-Iqbal, I., Healy-Louie, G., and Iqbal, K. 1992. Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer's brains. Biochem. Biophys. Res. Comm. 182:238–246.

    PubMed  Google Scholar 

  19. Shoffner, J., Watts, R., Juncos, J., Torroni, A., and Wallace, D. 1991. Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann. Neurol. 30:332–339.

    PubMed  Google Scholar 

  20. Swanson, S., Born, T., Zydowsky, L., Cho, H., Chang, H., Walsh, C., and Rusnak, F. 1992. Cyclosporin-mediated inhibition of bovine calcineurin by cyclophilins A and B. Proc. Natl. Acad. Sci. 89:3741–3745.

    PubMed  Google Scholar 

  21. Dawson, T., Steiner, J., Dawson, V., Dinerman, J., Uhl, G., and Snyder, S. 1993. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc. Natl. Acad. Sci. 90:9808–9812.

    PubMed  Google Scholar 

  22. Lowry, O., Rosebrough, N., Farr, A., and Randall, R. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  23. Towbin, H., Staehelin, T., and Gordon, J., 1979. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc. Natl. Acad. Sci. 76:4354–4356.

    Google Scholar 

  24. Halpain, S., and Greengard, P. 1990. Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP-2. Neuron 5:237–246.

    PubMed  Google Scholar 

  25. Lindwall, G., and Cole, R. 1984. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259:5301–5305.

    PubMed  Google Scholar 

  26. Lee, G. 1990. Tau protein: An update on structure and function. Cell Motility and the Cytoskeleton 15:199–203.

    PubMed  Google Scholar 

  27. Szendrei, G., Lee, V., and Otvos, L. 1993. Recognition of the minimal epitope of monoclonal antibody Tau-1 depends on the presence of a phosphate group but not its locations. J. Neurosci. Res. 34:243–249.

    PubMed  Google Scholar 

  28. Kowall, N., and Kosik, K. 1987. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease. Ann. Neurol. 22:639–643.

    PubMed  Google Scholar 

  29. Young, A., Sakurai, R., Albin, R., Makowiec, R., and Penney, J. 1991. Excitatory Amino Acid Receptor Distribution: Quantitative Autoradiographic Studies. Pages 19–29,in Wheal, H., and Thomson, A. (eds.), Excitatory Amino Acids and Synaptic Transmission, Academic Press Limited, San Diego, CA.

    Google Scholar 

  30. Richter, C., and Kass, G. 1991. Oxidative stress in mitochondria: its relationship to cellular homeostasis, cell death, proliferation, and differentiation. Chem. Biol. Interact. 77:1–23.

    PubMed  Google Scholar 

  31. Heytler, P. 1979. Uncouplers of oxidative phosphorylation. Meth. Enzymol. 55:462–471.

    PubMed  Google Scholar 

  32. McLaughlin, S., and Dilger, J. 1980. Transport of protons across membranes by weak acids. Physiol. Rev. 60:825–863.

    PubMed  Google Scholar 

  33. Jensen, J., and Rehder, V. 1991. FCCP releases Ca++ from a non-mitochondrial store in an identifiedHelisoma neuron. Brain Research 551:311–314.

    PubMed  Google Scholar 

  34. Duchen, M., Valdeolmillos, M., O'Neill, S., and Eisner, D. 1990. Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. J. Physiol. 424:411–426.

    PubMed  Google Scholar 

  35. Thayer, S., and Miller, R. 1990. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurons in vitro. J. Physiol. 425:85–115.

    PubMed  Google Scholar 

  36. Goto, S., Yamamoto, H., Fukunaga, K., Iwasa, T., Matsukado, Y., and Miyamoto, E. 1985. Dephosphorylation of microtubuleassociated protein 2, tau factor, and tubulin by calcineurin. J. Neurochem. 45:276–283.

    PubMed  Google Scholar 

  37. Cohen, P. 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58:453–508.

    PubMed  Google Scholar 

  38. Lui, J., Farmer, J., Lane, W., Friedman, J., Weissman, I., and Schreiber, S. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815.

    PubMed  Google Scholar 

  39. Johnson, G. 1992. Differential phosphorylation of tau by cAMP-dependent protein kinase and Ca++/calmodulin-dependent protein kinase II: Metabolic and functional consequences. J. Neurosci. 59:2056–2062.

    Google Scholar 

  40. Litersky, J., and Johnson, G. 1992. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J. Biol. Chem. 267:1563–1568.

    PubMed  Google Scholar 

  41. Goedert, N., Cohen, E., Jakes, R., and Cohen, P. 1992. p42 map kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2 A1. FEBS 312:95–99.

    Google Scholar 

  42. Liu, W., Moore, W., Williams, R., Hall, F., and Yen, S. 1993. Application of synthetic phosphopeptides to identify phosphorylation sites in a subregion of the tau molecule which is modified in Alzheimer's disease. J. Neurosci. Res. 34:371–376.

    PubMed  Google Scholar 

  43. Perlmutter, L., Gall, C., Baudry, M., and Lynch, G. 1990. Distribution of calcium-activated protease calpain in rat brain. J. Comp. Neurol. 296:269–276.

    PubMed  Google Scholar 

  44. Johnson, G., Jope, R., and Binder, L. 1989. Proteolysis of tau by calpain. Biochem. Biophys. Res. Comm. 163:1505–1511.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norman, S.G.P., Johnson, G.V.W. Compromised mitochondrial function results in dephosphorylation of tau through a calcium-dependent process in rat brain cerebral cortical slices. Neurochem Res 19, 1151–1158 (1994). https://doi.org/10.1007/BF00965149

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965149

Key Words

Navigation