Skip to main content
Log in

Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 1980

Abstract

Critical fracture stress and stress modified fracture strain models are utilized to describe the variation of lower and upper shelf fracture toughness with temperature and strain rate for two alloy steels used in the manufacture of nuclear pressure vessels, namely SA533B-1 (HSST Plate 02) and SA302B (Surveillance correlation heat). Both steels have been well characterized with regard to static and dynamic fracture toughness over a wide range of temperatures (−190 to 200°C), although validJ Ic measurements at upper shelf temperatures are still somewhat scarce. The present work utilizes simple models for the relevant fracture micromechanisms and local failure criteria to predict these variations in toughness from uniaxial tensile properties. Procedures are discussed for modelling the influence of neutron fluence on toughness in irradiated steel, and predictions are derived for the effect of increasing fluence on the variation of lower shelf fracture toughness with temperature in SA533B-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reports of the United States Atomic Energy Commission Heavy Section Steel Technology (HSST) Program, HSST Technical Reports no. 1-36, 1968–1975.

  2. R. A. Wullaert, J. W. Scheckherd, and R. W. Smith: ASTM STP 611, ASTM, pp. 400–17, 1976.

  3. R. H. Van Stone: General Electric Report no. SRD-78-116 for EPRI, pp. 5.1–5.13, General Electric Company, Schenectady, NY, July, 1978.

    Google Scholar 

  4. R. O. Ritchie, J. F. Knott, and J. R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  5. F. A. McClintock:Fracture, An Advanced Treatise, H. Leibowitz, ed., vol. 3, pp. 47–225, Academic Press, NY, 1971.

    Google Scholar 

  6. A. C. MacKensie, J. W. Hancock, and D. K. Brown:Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  Google Scholar 

  7. D. M. Parks:J. Eng. Mater. Technol., Ser. H, 1976, vol. 98, pp. 30–35.

    CAS  Google Scholar 

  8. E. Orowan:Rep. Prog. Phys., 1948, vol. 12, p. 185.

    Article  Google Scholar 

  9. J. F. Knott:J. Iron Steel Inst., 1966, vol. 204, pp. 104–11.

    CAS  Google Scholar 

  10. J. W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  11. J. R. Rice and G. F. Rosengren:Ibid., pp. 1–12.

    Article  Google Scholar 

  12. J. R. Rice and D. M. Tracey:Numerical and Computational Methods in Structural Mechanics, S. J. Fenveset al., eds., Academic Press, NY, 1973.

    Google Scholar 

  13. D. M. Tracey:J. Eng. Mater. Technol., Series H, 1976, vol. 98, pp. 146–51.

    Google Scholar 

  14. J. R. Rice and M. A. Johnson:Inelastic Behavior of Solids, M. F. Kanninenet al., eds., p. 641, McGraw Hill, NY, 1970.

    Google Scholar 

  15. R. M. McMeeking:J. Eng. Mater. Technol., Series H, 1976, vol. 98, pp. 146–51.

    Google Scholar 

  16. S. P. Rawal and J. Gurland:Met. Trans. A, 1977, vol. 8A, pp. 691–98.

    Article  CAS  Google Scholar 

  17. D. A. Curry and J. F. Knott:Met. Sci., 1976, vol. 10, pp. 1–6.

    Article  CAS  Google Scholar 

  18. D. A. Curry: C.E.R.L. Technical Report No. RD/L/N 64/78, Central Electricity Research Laboratory, Leatherhead, England, 1978.

    Google Scholar 

  19. H. J. Rack:Mater. Sci. Eng., 1976, vol. 24, pp. 165–70.

    Article  CAS  Google Scholar 

  20. J. R. Rice:J. Appl. Mech., Ser. E, 1968, vol. 35, p. 379.

    Google Scholar 

  21. T. R. Wilshaw, C. A. Rau, and A. S. Tetelman:Eng. Fract. Mech., 1968, vol. 1, pp. 191–211.

    Article  Google Scholar 

  22. A. S. Tetelman, T. R. Wilshaw, and C. A. Rau:Int. J. Fract. Mech., 1968, vol. 4, p. 147.

    Google Scholar 

  23. R. Hill:The Mathematical Theory of Plasticity, Oxford University Press, 1950.

  24. A. P. Green and B. B. Hundy:J. Mech. Phys. Solids, 1956, vol. 4, pp. 128–44.

    Article  Google Scholar 

  25. J. R. Griffiths and D. R. J. Owen:ibid., 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  26. D. R. J. Owen, G. C. Nayak, A. P. Kfouri, and J. R. Griffiths:Int. J. Num. Methods Eng., vol. 6, 1973, p. 63.

    Article  Google Scholar 

  27. J. W. Hancock and A. C. MacKenzie:J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  28. R. O. Ritchie and R. M. Horn:Met. Trans. A., 1978, vol. 9A, pp. 331–44.

    Article  CAS  Google Scholar 

  29. P. W. Bridgman:Studies in Large Plastic Flow and Fracture, McGraw Hill, 1952.

  30. R. M. McMeeking:J. Mech. Phys. Solids, 1977, vol. 25, pp. 357–81.

    Article  CAS  Google Scholar 

  31. R. K. Pandey and S. Banerjee:Eng. Fract. Mech., 1978, vol. 10, pp. 817–29.

    Article  CAS  Google Scholar 

  32. J. R. Hester and C. R. Brooks:Proceedings of Heavy Section Steel Technology Program, Fourth Annual Information Meeting, Oak Ridge National Laboratory, March/April 1970.

  33. W. L. Server and W. Oldfield: EPRI Report no. NP-933, Electric Power Research Institute, Palo Alto, CA, December 1978.

    Google Scholar 

  34. J. D. Landes and J. A. Begley: Weshinghouse Scientific Paper 76-1E7-JTINTF-P3, Westinghouse Scientific Laboratories, Pittsburgh, PA, May, 1976.

    Google Scholar 

  35. W. O. Shabbits: HSST Technical Report no. 13, Westinghouse Electric Corp., Pittsburgh, PA, December, 1970.

    Google Scholar 

  36. J. R. Mager and F. O. Thomas: HSST Technical Report no. 5, Westinghouse Electric Corp., Pittsburgh, PA, November, 1969.

    Google Scholar 

  37. G. W. Hunter and J. A. Williams:Nuc. Eng. Des., 1971, vol. 17, pp. 131–48.

    Article  Google Scholar 

  38. J. A. Williams: HSST Technical Report no. 31, Hanford Engineering Development Laboratory, Richland, WA, 1973.

    Google Scholar 

  39. W. Oldfield, R. A. Wullaert, W. L. Server, and T. R. Wilshaw: ETI Technical Report no. TR75-34R, Effects Technology, Inc., Santa Barbara, CA, July, 1975.

    Google Scholar 

  40. J. M. Steichen and J. A. Williams: HSST Technical Report no. 32, Hanford Engineering Development Laboratory, Richland, WA, July, 1973.

    Google Scholar 

  41. W. L. Server:J. Eng. Mater. Technol., Ser. H, 1978, vol. 100, pp. 183–88.

    Google Scholar 

  42. P. E. Bennett and G. M. Sinclair:J. Basic Eng., Ser. D, 1966, vol. 88, pp. 518–24.

    CAS  Google Scholar 

  43. J. A. Williams: HSST Technical Report no. 36, Hanford Engineering Development Laboratory, Richland, WA, January, 1975.

    Google Scholar 

  44. G. D. Whitman:Proc. Fourth Water Reactor Safety Research Information Meeting, (sponsored by Office of Water Reactor Safety Research, Nuclear Regulatory Commission). Gaithersburg, Maryland, September 1976.

  45. W. L. Server: ASTM STP 668, ASTM, pp. 493–514, 1979.

  46. N. Igata, H. Kayano, and K. Watanabe: ASTM STP 570, ASTM, pp. 24–37, 1975.

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02660643.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.O., Server, W.L. & Wullaert, R.A. Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels. Metall Trans A 10, 1557–1570 (1979). https://doi.org/10.1007/BF02812022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02812022

Keywords

Navigation