Skip to main content
Log in

Phylogeny and biogeography ofOrobanchaceae

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Orobanchaceae, as it is currently defined, includes all levels of parasitic ability ranging from nonparasitic (Lindenbergia) to facultative and obligate hemiparasites to obligate holoparasites. Several genera are of economic importance as crop weeds and have been studied by scientists interested in developing methods of control, but most genera have not been studied in a comparative framework. In this study we have used ITS sequence data to build a phylogenetic framework with which to examine previous systematic hypotheses of relationships among genera, and biogeographic hypotheses of either a Cretaceous, Gondwanan or mid-Tertiary, Laurasian origin of the family. A single-most parsimonious ITS tree was produced from a combined data set of nucleotides and gap characters. Our results support the current classification ofOrobanchaceae and a hypothesis of a mid-Tertiary, Laurasian origin of the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atokple I.D.K., Singh B.B., &Emechebe A.M. (1995): Genetics of resistance toStriga andAlectra in cowpea.J. Heredity 86: 45–49.

    Google Scholar 

  • Axelrod D.I. (1975): Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation.Ann. Missouri Bot. Gard. 62: 280–334.

    Article  Google Scholar 

  • Backlund A., Hunde A. &Langstrom E. (1993): A revision ofCycniopsis (Scrophulariaceae).Nord. J. Bot. 13: 185–194.

    Google Scholar 

  • Barker W.R. (1982): Taxonomic studies inEuphrasia L. (Scrophulariaceae). A revised infrageneric classification and a revision of the genus in Australia.J. Adelaide Bot. Gard. 5: 1–304.

    Google Scholar 

  • Barker W.R. (1986): Biogeography and evolution inEuphrasia (Scrophulariaceae), particularly relating to Australia. In:Barlow B.A. (ed.),Flora and fauna of alpine Australasia, Ages and origins, CSIRO, Melbourne, pp. 489–510.

    Google Scholar 

  • Beck von Mannagetta G. (1930):Orobanchaceae. In:Engler A. (ed.),Das Pflanzenreich 96, Verlag von Wilhelm Engelmann, Leipzig, pp. 1–348.

    Google Scholar 

  • Boeshore I. (1920): The morphological continuity ofScrophulariaceae andOrobanchaceae.Contr. Bot. Lab. Morris Arbor. Univ. Pennsylvania 5: 139–177.

    Google Scholar 

  • Coleman A.W. (2003): ITS2 is a double-edged tool for eukaryote evolutionary comparisons.Trends Genet. 19: 370–375.

    Article  PubMed  CAS  Google Scholar 

  • Denduangboripant J. &Cronk Q.C.B. (2001): Evolution and alignment of the hypervariable Arm 1 ofAeschynanthus (Gesneriaceae) ITS2 nuclear ribosomal DNA.Molec Phylog. Evol. 20: 163–172.

    Article  CAS  Google Scholar 

  • DePamphilis C.W. &Palmer J.D. (1990): Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant.Nature 348: 337–339.

    Article  PubMed  CAS  Google Scholar 

  • DePamphilis C.W., Young N.D., &Wolfe A.D. (1997): Evolution of plastid generps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate varition.Proc. Natl. Acad. Sci. USA 94: 7367–7372.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J. (2004):PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.

    Google Scholar 

  • Fischer E. (1996): A revision of the genusAlectraThunberg (Scrophulariaceae) in Madagascar, with a description ofPseudomelasma, gen. nov.Bull. Mus. Natl. Hist. Nat. B, Adansonia 18: 45–65.

    Google Scholar 

  • Fjeldsa J. &Lovett J.C. (1997): Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres.Biodiversity Conservation 6: 325–346.

    Article  Google Scholar 

  • Goertzen L.R., Cannone J.J., Gutell R.R., &Jansen R.K. (2003): ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae.Molec. Phylog. Evol. 29: 216–234.

    Article  CAS  Google Scholar 

  • Hasegawa M., Kishino H. &Yano T. (1985): Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.J. Molec. Evol. 22: 160–174.

    Article  PubMed  CAS  Google Scholar 

  • Heads M.J. (1994): Biogeographic studies in New ZealandScrophulariaceae: TribesRhinantheae, Calceolarieae andGratioleae.Candollea 94: 55–80.

    Google Scholar 

  • Hepper F.N. (1963):Scrophulariaceae. In:Hepper F.N. (ed.),Flora of West Tropical Africa, Crown agents for oversea governments and administrations, Millbank, London, pp. 352–374.

    Google Scholar 

  • Hershkovitz M.A. &Zimmer E.A. (1996): Conservation patterns in angiosperm rDNA ITS2.Nucl. Acids Res. 24: 2857–2867.

    Article  PubMed  CAS  Google Scholar 

  • Hjertson M.L. (1995): Taxonomy, phylogeny and biogeography ofLindenbergia (Scrophulariaceae).Bot. J. Linn. Soc. 119: 265–321.

    Article  Google Scholar 

  • Holub J. (1990): Some taxonomic and nomenclatural changes withOrobanche L.Preslia 62: 193–198.

    Google Scholar 

  • Hong D.-Y. (1983): The distribution ofScrophulariaceae in the holarctic with special reference to the floristic relationships between eastern Asia and eastern North America.Ann. Missouri Bot. Gard. 70: 701–712.

    Article  Google Scholar 

  • King L.J. (1966):Weeds of the world. Biology and control. Interscience Publishers, London.

    Google Scholar 

  • Kuijt J. (1969):The biology of parasitic flowering plants. University of California Press, Berkeley and Los Angeles.

    Google Scholar 

  • Mabberley D.J. (1997):The plant-book. A portable dictionary of the vascular plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Maddison W.P. &Maddison D.R. (1992):MacClade. Sinauer Associates, Sunderland.

    Google Scholar 

  • Magallón S., Crane P.R. &Herendeen P.S. (1999): Phylogenetic pattern, diversity, and diversification of eudicots.Ann. Missouri Bot. Gard. 86: 876–893.

    Article  Google Scholar 

  • Mai J.C. &Coleman A.W. (1997): The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants.J. Molec. Evol. 44: 258–271.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed K.I., Musselman L.J. &Riches C.R. (2001): The GenusStriga (Scrophulariaceae) in Africa.Ann. Missouri Bot. Gard. 88: 60–103.

    Article  Google Scholar 

  • Musselman L.J. (1980): The biology ofStriga, Orobanche, and other root-parasitic weeds.Annual Rev. Phytopathol. 18: 463–489.

    Article  Google Scholar 

  • Musselman L.J. (1986): Parasitic weeds and their impact in southwest Asia.Proc. Roy. Soc. Edinburgh 89B: 283–288.

    Google Scholar 

  • Musselman L.J. (1996): Parasitic weeds in the southern United States.Castanea 61: 271–292.

    Google Scholar 

  • Musselman L.J. &Hepper F.N. (1988): Studies in the flora of Arabia XX: the genusStriga in Arabia.Notes Roy. Bot. Gard. Edinburgh 45 (1):43–50.

    Google Scholar 

  • Musselman L.J. &Mann W.F. Jr. (1978):Root parasites of southern forests. South Forest Experimental Station, New Orleans.

    Google Scholar 

  • Musselman L.J. &Parker C. (1982): Preliminary host ranges of some strains of economically important broomrapes (Orobanche).Econ. Bot. 36: 270–273.

    Google Scholar 

  • Nickrent D.L., Duff R.J., Colwell A.E., Wolfe A.D., Young N.D., Steiner K.E. &DePamphilis C.W (1998): Molecular phylogenetic and evolutionary studies of parasitic plants. In:Soltis D.E., Soltis P.S. &Doyle J.J. (eds.),Plant molecular systematics II, Kluwer, Boston, pp. 211–241.

    Google Scholar 

  • Nickrent D.L., Ouyang Y., Duff R.J. &DePamphilis C.W. (1997): Do nonasterid holoparasitic flowering plants have plastid genomes?Pl. Molec. Biol. 34: 717–729.

    Article  CAS  Google Scholar 

  • Nickrent D.L. &Starr E.M. (1994): High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants.J. Molec. Evol. 39: 62–70.

    Article  PubMed  CAS  Google Scholar 

  • Olmstead R.G., DePamphilis C.W., Wolfe A.D., Young N.D., Elisens W.J. &Reeves P.A. (2001): Disintegration of theScrophulariaceae.Amer. J. Bot. 88: 348–361.

    Article  CAS  Google Scholar 

  • Paran I., Gidoni D. &Jacobsohn R. (1997): Variation between and within broomrape (Orobanche) species revealed by RAPD markers.Heredity 78: 68–74.

    Article  PubMed  CAS  Google Scholar 

  • Pennell F.W. (1935):The Scrophulariaceaeof eastern temperate North America. Academy of Natural Sciences of Philadelphia, Philadelphia.

    Google Scholar 

  • Rambaut A. (1996):Se-Al sequence alignment editor. Department of Zoology, University of Oxford, Oxford.

    Google Scholar 

  • Raven P.H. &Axelrod D.L. (1972): Plate tectonics and Australasian paleobiogeography.Science 176: 1379–1386.

    Article  PubMed  CAS  Google Scholar 

  • Raven P.H. &Axelrod D.L. (1974): Angiosperm biogeography and past continental movements.Ann. Missouri Bot. Gard. 61: 539–673.

    Article  Google Scholar 

  • Ritchie A., Blackwell A., Malloch G. &Fenton B. (2004): Heterogeneity of ITS1 sequences in the biting midgeCulicoides impunctatus (Goetghebuer) suggests a population in Argyll, Scotland, may be genetically distinct.Genome 47: 546–558.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson M.J. (2003): r8s. Inferring absolute rates of molecular evolution and diversgence times in the absence of a molecular clock.Bioinformatics 19: 301–302.

    Article  PubMed  CAS  Google Scholar 

  • Sang T., Crawford D.J. &Stuessy T.F. (1995): Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution.Proc. Natl. Acad. Sci. USA 92: 6813–6817.

    Article  PubMed  CAS  Google Scholar 

  • Schneeweiss G.M., Colwell A., Park J.-M., Jang C.-G. &Stuessy T.F. (2004): Phylogeny of holoparasiticOrobanche (Orobanchaceae) inferred from nuclear ITS sequences.Molec. Phylog. Evol. 30 465–478.

    Article  CAS  Google Scholar 

  • Seine R., Fischer E. &Barthlott W. (1995): Notes on theScrophulariaceae of Zimbabwean inselsbergs, with the description ofLindernia syncerus sp. nov.Feddes Repert. 106: 7–12.

    Article  Google Scholar 

  • Simmons M.P. &Ochoterena H. (2000): Gaps as characters in sequence-based phylogenetic analyses.Syst. Biol. 49: 369–381.

    Article  PubMed  CAS  Google Scholar 

  • Swofford D.L. (2002):PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland.

    Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. &Higgins D.G. (1997): The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucl. Acids Res. 25: 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Weber H.C. (1980): Zur Evolution des Parasitsmus bei denScrophulariaceae undOrobanchaceae.Pl. Syst. Evol. 136: 217–232.

    Article  Google Scholar 

  • Wen J. &Zimmer E.A. (1996): Phylogeny and biogeography ofPanax L. (the ginseng genus,Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA.Molec. Phylog. Evol. 6: 167–177.

    Article  CAS  Google Scholar 

  • Wikström N., Savolainen V., &Chase M.W. (2001): Evolution of the angiosperms: calibrating the family tree.Proc. Roy. Soc. London, Ser. B, Biol. Sci. 268: 2211–2220.

    Article  Google Scholar 

  • Wolfe A.D. &DePamphilis C.W. (1997): Alternate paths of evolution for the photosynthetic generbcL in four nonphotosynthetic species ofOrobanche.Pl. Molec. Biol. 33: 965–977.

    Article  CAS  Google Scholar 

  • Wolfe A.D. &DePamphilis C.W. (1998): The effect of relaxed functional constraints on the photosynthetic generbcL in photosynthetic and nonphotosynthetic parasitic plants.Molec. Biol. Evol. 15: 1243–258.

    PubMed  CAS  Google Scholar 

  • Wolfe A.D. &Randle C.P. (2001): Relationships within and among species of the holoparasitic genusHyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences.Syst. Bot. 26: 120–130.

    Google Scholar 

  • Young N.D., Steiner K.E. &DePamphilis C.W. (1999): The evolution of parasitism inScrophulariaceae/Orobanchaceae: Plastid gene sequences refute an evolutionary transition series.Ann. Missouri Bot. Gard. 86: 876–893.

    Article  Google Scholar 

  • Zuker M. (2003.): Mfold web server for nucleic acid folding and hybridization prediction.Nucl. Acids Res. 31: 3406–3415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea D. Wolfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, A.D., Randle, C.P., Liu, L. et al. Phylogeny and biogeography ofOrobanchaceae . Folia Geobot 40, 115–134 (2005). https://doi.org/10.1007/BF02803229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803229

Keywords

Navigation