Skip to main content
Log in

Effect of 5-HT1A receptor agonists in two models of anxiety after dorsal raphe injection

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The purpose of the present study was two-fold. Firstly, to present a more comprehensive analysis of the disinhibitory effects of 5-HT1A receptor agonists after discrete dorsal raphe (DRN) injections (Higgins et al. 1988). Secondly, the effects of the 5-HT1B receptor agonist CGS12066B and the 5-HT1B/1C agonist mCPP were examined following injection into this nucleus. The increases in social interaction (SI) induced by intra-raphe injections of 8-OH DPAT (0.02–1 μg), buspirone (0.04–0.2 μg), ipsapirone (0.2 μg) and gepirone (0.2–1 μg) under a high light unfamiliar paradigm (HLU) were typically due to increased bout frequency, duration and a higher incidence of sniff, follow, allogroom behaviour. These increases were qualitatively similar to those seen in control animals tested under low light/familiar (LLF) conditions, thus supporting the belief that the drug-induced increases in SI reflected decreases in anxiety. Furthermore, at doses effective under the HLU condition, 8-OH DPAT, buspirone and gepirone failed to modify SI under conditions of minimal suppression (LLF paradigm). At doses which significantly increased punished responding in a water-lick conflict test 8-OH DPAT, ipsapirone and gepirone tended to also increase unpunished rates of drinking. However, in drug untreated rats, prior habituation to the test apparatus also increased unpunished drinking, suggesting some neophobia-induced suppression. At a comparatively high dose, the 5-HT1B agonist CGS12066B (2.5 μg), but not the putative 5-HT1B/1c agonist mCPP (0.5–12.5 μg), increased SI under the HLU condition. Considered along-side the other compounds described in this report, the relative potency of CGS12066B may be reflective of a 5-HT1A receptor interaction. Together, these data support the proposal that the DRN is an important site through wich 5-HT1A receptor agonists express their anxiolytic actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Connor HE, Higgins GA (1990) Cardiovascular effects of 5-HT1A receptor agonists injected into the dorsal raphe nucleus of conscious rats. Eur J Pharmacol 182: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Critchley MAE, Handley SL (1987) Effects in the X-maze anxiety model of agents acting at 5-HT1 and 5-HT2 receptors. Psychopharmacology 93: 502–506

    Article  PubMed  CAS  Google Scholar 

  • Csanalosi I, Schweizer E, Chase WG, Rickels K (1987) Gepirone in anxiety: a pilot study. J Clin Psychopharmacol 7: 31–33

    Article  PubMed  CAS  Google Scholar 

  • Curzon G, Kennett GA (1990) mCPP: a tool for studying behavioural responses associated with 5-HT1c receptors. TIPS 11: 181–182

    PubMed  CAS  Google Scholar 

  • Dourish CT, Hutson PH, Curzon G (1986) Putative anxiolytics 8-OH DPAT, buspirone and TVXQ 7821 are agonists at 5-HT1A autoreceptors in the raphe nuclei. TIPS 7: 212–214

    CAS  Google Scholar 

  • Eison AS, Eison MS, Stanley M, Riblet LA (1986) Serotonergic mechanism in the behavioural effects of buspirone and gepirone. Pharmacol Biochem Behav 24: 701–706

    Article  PubMed  CAS  Google Scholar 

  • Engel JA, Hjorth S, Svensson K, Carlsson A, Liljequist S (1984) Anti-conflict effect of the putative serotonergic receptor agonist 8-OH DPAT. Eur J Pharmacol 105: 365–368

    Article  PubMed  CAS  Google Scholar 

  • File SE (1980) The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods 2: 219–238

    Article  PubMed  CAS  Google Scholar 

  • File SE (1985) Animal models for predicting clinical efficacy of anxiolytic drugs: social behaviour. Neuropsychobiology 13: 55–62

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Davies M (1990) The involvement of 5-hydroxytryptaminergic and dopaminergic mechanisms in the eating induced by buspirone, gepirone and ipsapirone. Br J Pharmacol 99: 519–525

    PubMed  CAS  Google Scholar 

  • Goa K, Ward A (1986) Buspirone: a preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. Drugs 32: 114–129

    Article  PubMed  CAS  Google Scholar 

  • Goldberg HL, Finnerty RJ (1979) Comparative efficacy of buspirone and diazepam in the treatment of anxiety. Am J Psychiatry 136: 1184–1187

    PubMed  CAS  Google Scholar 

  • Gower AJ, Tricklebank MD (1988) Alpha2-adrenoceptor antagonist activity may account for the effects of buspirone in an anti-conflict test in the rat. Eur J Pharmacol 155: 129–137

    Article  PubMed  CAS  Google Scholar 

  • Gozlan H, El Mestikaway S, Pichat L, Glowinski J, Hamon M (1983) Identification of pre-synaptic serotonin autoreceptors using a new ligand: [3H]-PAT. Nature 305: 140–142

    Article  PubMed  CAS  Google Scholar 

  • Guy AP, Gardner CR (1985) Pharmacological characterization of a modified social interaction model of anxiety in the rat. Neuropsychobiology 13: 194–200

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Elliott PJ (1991) Differential behavioural activation following intra-raphe infusion of 5-HT1A drugs. Eur J Pharmacol 193: 351–356

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Bradbury AJ, Jones BJ, Oakley NR (1988) Behavioural and biochemical consequences following activation of 5-HT1-like and GABA receptors in the dorsal raphe nucleus of the rat. Neuropharmacology 27: 993–1001

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Jones BJ, Oakley NR, Tyers MB (1991) Evidence that the amygdala is involved in the disinhibitory effects of 5-HT3 antagonists. Psychopharmacology 104: 545–551

    Article  PubMed  CAS  Google Scholar 

  • Hillegaart V (1991) Effects of local application of 5-HT and 8-OH DPAT into the dorsal and median raphe nuclei on core temperature in the rat. Psychopharmacology 103: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Hillegaart V, Hjorth S (1989) Median raphe, but not dorsal raphe, application of the 5-HT1A agonist 8-OH DPAT stimulates rat motor activity. Eur J Pharmacol 160: 303–307

    Article  PubMed  CAS  Google Scholar 

  • Hutson PH, Sarna GS, O’Connell MT, Curzon G (1989) Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OH DPAT into the nucleus raphe dorsalis. Neurosci Lett 100: 276–280

    Article  PubMed  CAS  Google Scholar 

  • Iversen SD (1984) 5-HT and anxiety. Neuropharmacology 23: 1553–1560

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Whitton P, Shah K, Curzon G (1989) Anxiogenic-like effects of mCPP and TFMPP in animal models are opposed by 5-HT1c receptor antagonists. Eur J Pharmacol 164: 445–454

    Article  PubMed  CAS  Google Scholar 

  • Meert TF, Colpaert FC (1986) The shock probe conflict procedure: a new assay responsive to benzodiazepines, barbiturates and related compounds. Psychopharmacology 88: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Moser PC (1989) An evaluation of the elevated plus-maze using the novel anxiolytic buspirone. Psychopharmacology 99: 48–53

    Article  PubMed  CAS  Google Scholar 

  • Neale RF, Fallon SL, Boyar WC, Wasley JWF, Martin LL, Stone GA, Glaeser BS, Sinton CM, Williams M (1987) Biochemical and pharmacological characterization of CGS12066B, a selective serotonin-1B agonist. Eur J Pharmacol 136: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Oakley NR, Jones BJ (1983) Buspirone enhances [3H]-flunitrazepam binding in vivo. Eur J Pharmacol 87: 499–500

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Pellow S, Johnston AL, File SE (1987) Selective agonists and antagonists for 5-hydroxytryptamine receptor subtypes, and interactions with yohimbine and FG7142 using the elevated plusmaze test in the rat. J Pharm Pharmacol 39: 917–928

    PubMed  CAS  Google Scholar 

  • Pettibone DJ, Williams M (1984) Serotonin-releasing effects of substituted piperazines in vitro. Biochem Pharmacol 33: 1531–1535

    Article  PubMed  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1989) Interaction of arylpiperazines with 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors: do discriminatory 5-HT1B receptor ligands exist? Naunyn-Schmiedeberg’s Arch Pharmacol 339: 675–683

    Article  CAS  Google Scholar 

  • Schuurman T, Spencer DG, Traber J (1986) Behavioural effects of the 5-HT1A receptor ligand ipsapirone (TVXQ7821): a comparison with 8-OH DPAT and diazepam. Psychopharmacology 89: S54

    Google Scholar 

  • Sharp T, Bramwell SR, Clark D, Grahame-Smith DG (1989a) In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem 53: 234–240

    Article  PubMed  CAS  Google Scholar 

  • Sharp T, Bramwell SR, Grahame-Smith DG (1989b) 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol 96: 283–290

    PubMed  CAS  Google Scholar 

  • Sinton CM, Fallon SL (1988) Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 157: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Soderpalm B, Hjorth S, Engel JA (1989) Effects of 5-HT1A receptor agonists and L-5-HTP in Montgomery’s conflict test. Pharmacol Biochem Behav 32: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Soubrie P (1986) Reconciling the role of central serotonin neurones in human and animal behaviour. Behav Brain Sci 9: 319–363

    Article  Google Scholar 

  • Sprouse JS, Aghjanian GK (1987) Electrophysiological response of serotonergic dorsal raphe neurones to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9

    Article  PubMed  CAS  Google Scholar 

  • Traber J, Glaser T (1987) 5-HT1A receptor-related anxiolytics. TIPS 8: 432–437

    CAS  Google Scholar 

  • Vandermaelen CP, Matheson GK, Wilderman RC, Patterson LA (1987) Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a nonbenzodiazepine anxiolytic drug. Eur J Pharmacol 129: 123–130

    Article  Google Scholar 

  • Verge D, Daval G, Marcinkiewicz M, Patey A, El Mestikaway M, Gozlan H, Hamon M (1986) Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats. J Neursci 6: 3474–3482

    CAS  Google Scholar 

  • Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacology 21: 1–7

    Article  CAS  Google Scholar 

  • Weissman-Nanopoulos D, Mach E, Magre J, Demassey Y, Pujol J-F (1985) Evidence for the localization of 5-HT1A binding sites on serotonin containing neurones in the raphe dorsalis and raphe centralis nuclei of the rat brain. Neurochem Int 7: 1061–1072

    Article  Google Scholar 

  • Whitton P, Curzon G (1990) Anxiogenic-like effect of infusing 1-(3-chlorophenyl) piperazine (mCPP) into the hippocampus. Psychopharmacology 100: 138–140

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson LO, Dourish CT (1991) Serotonin and animal behaviour. In: Peroutka SJ (ed) Serotonin receptor subtypes: basic and clinical aspects. Wiley-Liss, New York, pp 147–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, G.A., Jones, B.J. & Oakley, N.R. Effect of 5-HT1A receptor agonists in two models of anxiety after dorsal raphe injection. Psychopharmacology 106, 261–267 (1992). https://doi.org/10.1007/BF02801982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801982

Key words

Navigation