Skip to main content
Log in

A minimal area problem in conformal mapping II

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

LetS denote the usual class of functionsf holomorphic and univalent in the unit diskU. For 0<r<1 andr(1+r)−2<b<r(1−r)−2, letS(r, b) be the subclass of functionsf∈S such that |f(r)|=b. In Theorem 1, we solve the problem of minimizing the Dirichlet integral inS(r, b). The first main ingredient of the solution is the establishment of sufficient regularity of the domains onto whichU is mapped by extremal functions, and here techniques of symmetrization and polarization play an essential role. The second main ingredient is the identification of all Jordan domains satisfying a certain kind of functional equation (called “quadrature identities”) which are encountered by applying variational techniques. These turn out to be conformal images ofU by mappings of a special form involving a logarithmic function. In Theorem 2, this aspect of our work is generalized to encompass analogous minimal area problem when a larger number of initial data are prescribed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AS1] D. Aharonov and H. S. Shapiro,A minimal area problem in conformal mapping, Preliminary Report, Royal Institute of Technology Research Report, TRITA-MAT-1973-7, Stockholm, 1973.

  • [AS2] D. Aharonov and H. Shapiro,A minimal area problem in conformal mapping, inCanterbury 1973 (J. Clunie and W. K. Hayman, eds.), London Math. Soc. Lecture Note Ser.12, Cambridge Univ. Press, 1973, pp. 1–5.

  • [AS3] D. Aharonov and H. S. Shapiro,Domains on which analytic functions satisfy quadrature identities, J. Analyse Math.30 (1976), 39–73.

    Article  MATH  MathSciNet  Google Scholar 

  • [AS4] D. Aharonov and H. S. Shapiro,A minimal area problem in conformal mapping, Preliminary Report, II, Royal Institute of Technology Research Report, TRITA-MAT-1978-5, Stockholm, 1978.

  • [ASS] D. Aharonov, H. S. Shapiro and A. Yu. Solynin,A minimal area problem in conformal mapping, J. Analyse Math.78 (1999), 157–176.

    MATH  MathSciNet  Google Scholar 

  • [Ba] A. Baenstein II,Integral means, univalent functions and circular symmetrization, Acta Math.133 (1974), 139–169.

    Article  MathSciNet  Google Scholar 

  • [Be] S. Bergman,The Kernel Function and Conformal Mapping, Math. Surveys Monographs No. 5, Amer. Math. Soc., Providence, RI, 1950.

    MATH  Google Scholar 

  • [Da] P. Davis,The Schwarz Function and Its Applications, Carus. Math. Monographs17, Math. Assoc. America, Washington, DC, 1974.

    MATH  Google Scholar 

  • [Du] V. N. Dubinin,Symmetrization in geometric theory of functions of a complex variable, Uspehi Mat. Nauk49 (1994), 3–76 (in Russian); English translation: Russian Math. Surveys49 (1994), 1–79.

    MathSciNet  Google Scholar 

  • [H] W. K. Hayman,Multivalent Functions, Cambridge Univ. Press, Cambridge, 1958.

    MATH  Google Scholar 

  • [J] J. A. Jenkins,On circularly symmetric functions, Proc. Amer. Math. Soc.6 (1955), 620–624.

    Article  MATH  MathSciNet  Google Scholar 

  • [K1] G. V. Kuz'mina,On extremal properties of quadratic differentials with strip domains in the structure of the trajectories, Zap. Nauchn. Sem. LOMI154 (1986), 110–129; English translation: J. Soviet Math.43 (1988), 2579–2591.

    MATH  Google Scholar 

  • [K2] G. V. Kuz'mina,Methods of geometric function theory. II., Algebra i Analiz9 (1997), 1–50; English translation: St. Petersburg Math. J.9 (1998), 889–930.

    MathSciNet  Google Scholar 

  • [N] Z. Nehari,Conformal Mapping, McGraw-Hill, New York, 1952.

    MATH  Google Scholar 

  • [Sa] M. Sakai,Quadrature Domains, Lecture Notes in Math.934, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  • [Sh] H. S. Shapiro,The Schwarz Function and Its Generalization to Higher Dimensions, Wiley-Interscience, New York, 1992.

    MATH  Google Scholar 

  • [Shi] M. Shiba,The Euclidian, hyperbolic, and spherical spans of an open Riemann surface of low genus and the related area theorems, Kodai Math. J.16 (1993), 118–137.

    Article  MATH  MathSciNet  Google Scholar 

  • [So1] A. Yu. Solynin,The boundary distortion and extremal problems in certain classes of univalent functions, Zap. Nauchn. Sem. POMI204 (1993), 115–142 (in Russian); English translation: J. Math. Sci.79 (1996), 1341–1358.

    Google Scholar 

  • [So2] A. Yu. Solynin,Modules and extremal metric problems, Algebra i Analiz11 (1999), no. 1, 3–86 (in Russian); English translation: St. Petersburg Math. J.11 (2000), 1–65.

    MathSciNet  Google Scholar 

  • [W] V. Wolontis,Properties of conformal invariants, Amer. J. Math.74 (1952), 587–606.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Aharonov.

Additional information

The third author thanks for its hospitality the Mittag-Leffler Institute of Royal Swedish Academy of Sciences where this work was finalized. This author was supported in part by the Swedish Institute and by the Russian Fund for Fundamental Research, grant no. 97-01-00259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharonov, D., Shapiro, H.S. & Solynin, A.Y. A minimal area problem in conformal mapping II. J. Anal. Math. 83, 259–288 (2001). https://doi.org/10.1007/BF02790264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790264

Keywords

Navigation