Skip to main content
Log in

The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To develop a yeast strain that is able to produce ethanol directly from starch, α-amylase cDNA (originated from mouse salivary glands) was introduced into the hyploidSaccharomyces diastiticus cells secreting glucoamylase by using a linearized integrating vector. The integrating vector contains aLEU2 gene and the inside of theLEU2 gene was cut byKpnl to make the linearized vector. One of the transformants exhibited 100% mitotic stability after 100 generations of cell multiplication. To improve its ethanol-fermentability, the haploid transformant was rare-mated with a polyploid industrial strain having no amylase activity. The resulting hybrid RH51 produced 7.5 (w/v) ethanol directly from 20% (w/v) soluble starch and its mitotic stability was 100% at the end of fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murtagh, J. (1986),Process Biochem. 4, 61–65.

    Google Scholar 

  2. Amin, G., De Mot, R., Van Dijck, K., and Verachtert, H. (1985),Appl. Microbiol. Biotechnol. 22, 237–245.

    Article  CAS  Google Scholar 

  3. De Mot, R., Van Dijick, K., Donkers, A., and Verachtert, H. (1985),Appl. Microbiol. Biotechnol. 22, 222–226.

    Article  Google Scholar 

  4. Laluce, C. and Mattoon, J. R. (1984),Appl. Environ. Microbiol. 48, 17–25.

    CAS  Google Scholar 

  5. Mattoon, J. R., Kim, K., and Laluce, C. (1987),CRC. Cri. Rev. Biotechnol. 5, 195–204.

    Article  CAS  Google Scholar 

  6. Yamashita, I., Maemura, T., Hatano, T., and Fukui, S. (1985),J. Bacterol. 161, 574–582.

    CAS  Google Scholar 

  7. Sato, T., Tsunasawa, S., Nakamura, Y., Emi, M., Sakiyama, F., and Matsubara, K. (1986),Gene 50, 247–257.

    Article  CAS  Google Scholar 

  8. Sato, T., Uemura, H., Izumoto, Y., Nakao, J., Nakamura, Y., and Matsubara, K. (1989),Gene 83, 355–365.

    Article  CAS  Google Scholar 

  9. Thomsen, K. K. (1983),Carlberg Res. Commun. 48, 545–555.

    CAS  Google Scholar 

  10. Filho, S. A., Galembeck, E. V., Faria, J. B., and Frascino, A. C. S. (1986),Bio/Technol. 4, 311–315.

    Article  Google Scholar 

  11. Kim, K., Park, C. S., and Mattoon, J. R. (1988),Appl. Environ. Microbiol. 54, 966–971.

    CAS  Google Scholar 

  12. Rothstein, S. J., Lazarus, C. M., Smith, W. E., Baulcombe, D. C., and Gatenby, A. A. (1984),Nature 308, 662–665.

    Article  CAS  Google Scholar 

  13. Pretorius, I. S., Laing, E., Pretorius, G. H. J., and Marmur, J. (1988),Curr. Genet. 14, 1–8.

    Article  CAS  Google Scholar 

  14. Thomsen, K. K. (1987),CRC. Cri. Rev. Biotechnol. 5, 205–215.

    Article  CAS  Google Scholar 

  15. Blomqvist, K., Suihko, M. L., Knowles, J., and Penttila, M. (1991),Appl. Environ. Microbiol. 57, 2796–2803.

    CAS  Google Scholar 

  16. Fujii, T., Kondo, K., Shimizu, F., Sone, H., Tanaka, J., and Inoue, T. (1990),Appl. Environ. Microbiol. 56, 997–1003.

    CAS  Google Scholar 

  17. Kallio, P., Palva, A., and Palva, I. (1987),Appl. Microbiol. Biotechnol. 27, 64–71.

    Article  CAS  Google Scholar 

  18. Hinnen, A., Hicks, J. B., and Fink, G. R. (1978),Proc. Natl. Acad. Sci. USA 75, 1929–1933.

    Article  CAS  Google Scholar 

  19. Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J. (1981),Proc. Natl. Acad. Sci. USA 78, 6354–6358.

    Article  CAS  Google Scholar 

  20. Rothstein, R. J. (1983),Methods Enzymol. 101, 202–211.

    Article  CAS  Google Scholar 

  21. Hohmann, S. (1987),Curr. Genet. 12, 519–526.

    Article  CAS  Google Scholar 

  22. Sakai, A., Shimizu, Y., and Hishinuma, F. (1990),Appl. Microbiol. Biotechnol. 33, 302–306.

    Article  CAS  Google Scholar 

  23. Jones, R. P., Pamment, N., and Greenfield, P. F. (1981),Proc. Biochem. 16(3), 42–49.

    CAS  Google Scholar 

  24. Kim, K. and Lee, J. W. (1994),J. Microbiol. Biotechnol. 4, 7–12.

    Article  CAS  Google Scholar 

  25. Botstein, D., Falco, S. C., Stewart, S. E., Brennan, M., Scherer, S., Stincomb, D. T., Strull, K., and Davis, R. W. (1979),Gene 8, 17–24.

    Article  CAS  Google Scholar 

  26. Beier, D. R. and Young, E. T. (1982),Nature 300, 724–728.

    Article  CAS  Google Scholar 

  27. Broach, J. R., Strathern, J. N., and Hicks, J. B. (1979),Gene 8, 121–133.

    Article  CAS  Google Scholar 

  28. Lennox, E. M. (1955),Virology 1, 190–206.

    Article  CAS  Google Scholar 

  29. Sherman, F., Fink, G. R., and Hicks, J. B. (1986),Methods in Yeast Genetics, Laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  30. Sambook, J., Fritsch, E. F., and Maniatis, T. (1989),Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, N.Y.

    Google Scholar 

  31. Ito, H., Murata, K., and Kimura, A. (1984),Agric. Biol. Chem. 48, 341–347.

    CAS  Google Scholar 

  32. Bernet, E. and Gutmann, I. (1974), inMethods of Enzymatic Analysis, vol. 3., Bergmeyer, H. U., ed., Academic Press, New York, pp. 1499–1502.

    Google Scholar 

  33. Vehmaanpera, J., Steinborn, G., and Hofemeister, J. (1991),J. Bacteriol. 19, 221–240.

    CAS  Google Scholar 

  34. Slugenova M., Bukovska, G., Turna, J., and Timko, J. (1993),Biotechnol. Lett. 15, 483–488.

    Article  CAS  Google Scholar 

  35. Gellissen, G., Janowicz, Z. A., Merckelbach, A., Piontek, M., Keup, P., Weydemann, U., Hollenberg, C. P., and Strasser, A. W. (1991),Biotechnology 9, 291–295.

    Article  CAS  Google Scholar 

  36. Smith, R. A., Margaret, J., Duncan, J., and Moir, D. T. (1985),Science 229, 1219–1224.

    Article  CAS  Google Scholar 

  37. Nyberg, K., Palva, A., and Palva, I. (1985),FEMS Microbiol. Lett. 29, 305–310.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, TG., Kim, K. The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating. Appl Biochem Biotechnol 59, 39–51 (1996). https://doi.org/10.1007/BF02787856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787856

Index Entries

Navigation