Skip to main content
Log in

Distribution of 2-chloro-2′-deoxyadenosine, 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine, Fludarabine and Cytarabine in mice: a whole-body autoradiography study

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The distribution characteristics of tritiated nucleoside analogs, 2-chloro-2′-deoxyadeonosine (CdA), 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine (CAFdA), 2-fluoroarabinosyladenine (F-ara-A) and cytosine arabinoside (ara-C) were compared in mice using whole-body autoradiography. CdA, CAFdA and F-ara-A have quite similar molecular structures, but they differ substantially in clinical activity as well as the side effects. Eight mice were injected intravenously in couples. One mouse from each pair was killed 20 min postinjection and the other mouse from each pair 4 h after the injection. The distribution, of the label was then analyzed by whole-body autoradiography.

The distribution of the nucleoside analogs was rapid and uniform. High concentrations were found in highly perfused organs. After 4 h the overall concentration had decreased but relatively high activities were found in the skin for CdA and CAFdA, in the thymus for ara-C and the bone marrow for CdA.

Both CdA and CAFdA were found in the brain, but the concentration, was surprisingly lower after 4 h for CAFdA, a lipophilic and more stable analog as compared to CdA. There was an uptake of CdA, F-ara-A and CAFdA in the skin. There were signs of retention of ara-C in parts of the thymus.

The present investigations indicate that the nucleoside analog transport to the brain in mice is not primarily dependent upon passive diffusion over a lipophilic barrier, but suggestive of a specific transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryson HM, Sorkin EM. Cladribine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in haematological malignancies [Review].Drugs 1993;46: 872–894.

    Article  CAS  PubMed  Google Scholar 

  2. Montgomery J, Shortnacy-Flower A, Clayton Set al. Synthesis and biological activity of 2′-fluoro-2-halo derivatives of 9-beta-D-arabinofuranosyladenine.J Med Chem 1992;35: 397–401.

    Article  CAS  PubMed  Google Scholar 

  3. Parker W, Shaddix S, Chang Cet al. Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polumerases by its 5′-triphosphate.Cancer Res 1991;51: 2386–2394.

    CAS  PubMed  Google Scholar 

  4. Takahashi T, Kanazawa J, Akinaga Set al. Antitumor activity of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) adenine, a novel deoxyadenosine analog, against human colon tumor xenografts by oral administration.Cancer Chemother Pharmacol 1999;43: 233–240.

    Article  CAS  PubMed  Google Scholar 

  5. Carson D, Wasson B, Esparza Let al. Oral antilymphocyte activity and induction of apoptosis by 2-chloro-2′-arabinofluoro-2′-deoxyadenosine.Proc Natl Acad Sci USA 1992;89: 2970–2974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herrström Sjöberg A, Wang L, Eriksson S. Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs.Mol. Pharmacol 1998;53: 270–273.

    Article  Google Scholar 

  7. Wang L, Karlsson A, Mathiesen T, Eriksson S. 2-Chloro-2′-deoxyadenosine Phosphorylation by deoxyguanosine kinase in crude extracts of malignant human brain tissue.Recent Advances in Chemotherapy, Washington, DC: Am. Soc. Microbiol., 1993.

    Google Scholar 

  8. Reichelova V, Liliemark J, Albertioni F Stucture-activity relationships of 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine and related analogues: protein binding, lipophilicity, and retention in reversed-phase LC.J Liq Chromatogr 1995;18: 1123–1135.

    Article  CAS  Google Scholar 

  9. van Prroijen HC Vierwinden G, Wessel J, Haanen C. Cytosine arabinoside binding to human plasma proteins.Arch Int Pharmacodyn Ther 1977;229: 199–205.

    PubMed  Google Scholar 

  10. Cheson BD. Infectious and immunosuppressive complications of purine analog therapy. [Review].J Clin Oncol 1995;13: 2431–2448.

    Article  CAS  PubMed  Google Scholar 

  11. Cheson BD, Vena DA, Foss FM, Sorensen, JM. Neurotoxicity of purine analogs: a review. [Review].J Clin Oncol 1994;12: 2216–2228.

    Article  CAS  PubMed  Google Scholar 

  12. Toyoshima S, Fukuma M, Seto Yet al. In vivo distribution of 14C-labeled N4-behenoyl-1-beta-D-arabinofuranosylcytosine in mice.Gann 1981;72: 19–29.

    CAS  PubMed  Google Scholar 

  13. Xie C, Plunkett W. Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabnofuranosyl)-adenine in human lymphoblastoid cells.Cancer Res 1995;55: 2847–2852.

    CAS  PubMed  Google Scholar 

  14. Ullberg S, Larsson B, Tjälve H.Autoradiography 1982; 55–108.

  15. d'Argy R, Sperber GO, Larsson BS, Ullberg S. Computerassisted quantification and image processing of whole-body autoradiograms.J Pharmacol Methods 1990;24: 165–181.

    Article  CAS  PubMed  Google Scholar 

  16. Juliusson G, Heldal D Hippe Eet al. Subcutaneous injections of 2-chlorodeoxyadenosine for symptomatic hairy cell leukemia.J Clin Oncol 1995;13: 989–995.

    Article  CAS  PubMed  Google Scholar 

  17. Piro LD, Carrera CJ, Carson DA, Beutler E. Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine.E Engl J Med 1990;322: 1117–1121.

    Article  CAS  Google Scholar 

  18. Sipe JC, Romine JS, Koziol JAet al. Cladribine in treatment of chronic progressive multiple sclerosis.Lancet 1994;344: 9–13.

    Article  CAS  PubMed  Google Scholar 

  19. Sanatana V, Mirro J, Kearns Cet al. 2-Chlrodeoxyadeno-sine produces a high rate of complete hematologic remissions in relapsed acure myeloid leukemia.J Clin Oncol 1992;10: 364–370.

    Article  Google Scholar 

  20. Cornford E, Oldendorf W. Independent blood-brain barrier transport system for nucleic acid precursors.Biochim Biophys Acta 1975;394: 211–219.

    Article  CAS  PubMed  Google Scholar 

  21. Spector R, Berlinger W. Localization and mechanism of thymidine transport in the central nervous system.J Neurochem 1982;39: 837–841.

    Article  CAS  PubMed  Google Scholar 

  22. Borg N, Zhou X, Johansson Net al. Distribution to the brain and protein binding of 3′ and 5-substitited 2′, 3′-dideoxyuridine derivatives, studied by microdialysis.Antivir Chem Chemother 1997;8: 47–53.

    Article  CAS  Google Scholar 

  23. Reichelova V, Juliusson G, Spasokoukotskaja Tet al. Interspecies differences in the kinetic properties of deoxycytidine kinase elucidate the poor utility of a phase I pharmacologically directed dose-escalation concept for 2-chloro-2′-deoxyadenosine.Cancer Chemother Pharmacol 1995;36: 524–529.

    Article  CAS  PubMed  Google Scholar 

  24. Habteyesus A Nordenskjöld A Bohman C, Eriksson S. Deoxynucleoside phosphorylating enzymes in monkey and human tissue show great similarities, while mouse deoxycytidine kinase has a different substrate specificity.Biochem Pharmacol 1991;42: 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  25. Migchielsen AA, Breuer ML, van Roon MAet al. Adenosine-deaminase-deficient mice die perinatally and exhibit liver-cell degeneration, atelectasis and small intestinal cell death.Nat Genet 1995;10 279–287.

    Article  CAS  PubMed  Google Scholar 

  26. Wakamiya M, Blackburn MR, Jurecic Ret al. Disruption of the adenosine deaminase gene causes hepatocellular impairment and perinatal lethality in mice.Proc Natl Acad Sci USA 1995;92: 3673–3677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eibschutz B, Baird SM, Weisman MHet al. Oral 2-chlorodeoxyadenosine in psoriatic arthritis. A preliminary report.Arthritis Rheum 1995;38: 1604–1609.

    Article  CAS  PubMed  Google Scholar 

  28. Saven A, Carrera CJ, Carson DAet al. 2-Chlorodeoxyadenosine: an active agent in the treatment of cutaneous T-cell lymphoma.Blood 1992;80: 587–592.

    Article  CAS  PubMed  Google Scholar 

  29. Doi T, Sakamaki S, Koike Ket al. CD7, HLA-DR, CD38 positive acute undifferentiated leukemia with subcutaneous tumor and thymoma.Rinsho Ketsueki 1996;37: 676–681.

    CAS  PubMed  Google Scholar 

  30. Richards AI. Response of meningeal Waldenstrom's macroglobulinemia to 2-chlorodeoxyadenosine.J Clin Oncol 1995;13: 2476.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freidoun Albertioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindemalm, S., Liliemark, J., Larsson, B.S. et al. Distribution of 2-chloro-2′-deoxyadenosine, 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine, Fludarabine and Cytarabine in mice: a whole-body autoradiography study. Med Oncol 16, 239–244 (1999). https://doi.org/10.1007/BF02785869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785869

Keywords

Navigation