Skip to main content
Log in

Effect of low dietary rubidium on plasma biochemical parameters and mineral levels in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of low dietary rubidium on plasma biochemical parameters and mineral levels in tissues in rats were studied. Eighteen male Wistar rats, weighing about 40 g, were divided into two groups and fed the diets with or without supplemental rubidium (0.54 vs 8.12 mg/kg diet) for 11 wk. Compared to the rats fed the diet with supplemental rubidium, the animals fed the diet without rubidium supplementation had higher urea nitrogen in plasma; lower rubidium concentration in tissues; lower sodium in muscle; higher potassium in plasma, kidney and tibia, and lower potassium in testis; lower phosphorus in heart and spleen; lower calcium in spleen; higher magnesium in muscle and tibia; higher iron in muscle; lower zinc in plasma and testis; and lower copper in heart, liver, and spleen, and higher copper in kidney. These results suggest that rubidium concentration in tissues reflects rubidium intake, and that rubidium depletion affects mineral (sodium, potassium, phosphorus, calcium, magnesium, iron, zinc, and copper) status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Nielsen, Other elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr, Be, Bi, Ga, Au, In, Nb, Sc, Te, Tl, W, inTrace Elements in Human and Animal Nutrition, W. Mertz, eds., Academic, New York, pp. 415–463 (1986).

    Google Scholar 

  2. A. Lasnitzki and E. Szörényi, CCXXIII. The influence of different cations on the growth of yeast cells.Biochem. J. 28, 1678–1683 (1934).

    PubMed  CAS  Google Scholar 

  3. Y.-F. Liu, R.-H. Tang, Q.-X. Zhang, J.-Y. Shi, X.-M. Li, Z.-Q. Liu, and W. Zhao, Stimulation of cell growth ofTetrahymena pyriformis andChlamydomonas reinhardtii by trace elements,Biol. Trace Elem. Res. 9, 89–99 (1986).

    CAS  Google Scholar 

  4. R. A. MacLeod and E. E. Snell, The effect of related ions on the potassium requirement of lactic acid bacteria,J. Biol. Chem. 176, 39–52 (1948).

    CAS  PubMed  Google Scholar 

  5. K. Schwarz, Essentiality vs. toxicity of metals, inClinical Chemistry and Chemical Toxicology of Metals, S. S. Brown, eds., Elsevier-New Holland, New York, pp. 3–22 (1977).

    Google Scholar 

  6. I. Lombeck, K. Kasperek, L. E. Feinendegen, and H. J. Bremer, Rubidium—a possible essential trace elemen. 1. The rubidium content of whole blood of healthy and dietetically treated children.Biol. Trace Elem. Res. 2, 193–198 (1980).

    Article  CAS  Google Scholar 

  7. O. Eisa and J. Yudkin, Mineral elements in unrefined sugar, and rat reproduction,Int. J. Vitam. Nutr. Res. 59, 77–79 (1989).

    PubMed  CAS  Google Scholar 

  8. M. Anke, L. Angelow, A. Schmidt, and H. Gürtler, Rubidium: an essential element for animal and man?, inTrace Elements in Man and Animals—TEMA, vol. 8, M. Anke, D. Meissner and C. F. Mills, eds., Verlag Media Touristik, Gersdorf, Germany, pp. 719–723 (1993).

    Google Scholar 

  9. M. S. Mameesh and B. C. Johnson, The effect of penicillin on the intestinal synthesis of thiamine in the rat,J. Nutr. 65, 161–167 (1958).

    PubMed  CAS  Google Scholar 

  10. E. Sabbioni, R. Pierta, and E. Marafante, Metal metabolism in laboratory animals and human tissues as investigated by neutron activation analysis: current status and perspectives.J. Radioanal. Chem. 69, 381–400 (1982).

    Article  CAS  Google Scholar 

  11. B. L. Glendening, W. G. Schrenk and D. B. Parrish, Effects of rubidium in purified diets fed rats,J. Nutr. 60, 563–579 (1956).

    PubMed  CAS  Google Scholar 

  12. E. I. Hamilton, M. J. Minski, and J. J. Cleary, The concentration and distribution of some stable elements in healthy human tissues from the United Kingdom,Sci. Total Environ. 1, 341–374 (1972/1973).

    Article  Google Scholar 

  13. G. LeBlondel and P. Allain, Effects of thyroparathyroidectomy and of thyroxin and calcitonin on the tissue distribution of twelve elements in the rat.Biol. Trace Elem. Res. 19, 171–183 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. I. G. F. Gilbert, The comparative transport of K+ and Rb+ in normal and malignant rat tissuesin vivo and in liver slices, diaphragm, and tumor slicesin vitro, J. Membrane Biol. 2, 277–299 (1970).

    Article  Google Scholar 

  15. N. Yamagata, The concentration of common cesium and rubidium in human body,J. Radiat. Res. 3, 9–30 (1962).

    PubMed  CAS  Google Scholar 

  16. P. Allain, C. Tafforeau, Y. Mauras, and G. LeBlondel, Determination of rubidium in blood by flame emission spectrometry,Anal. Chim. Acta 165, 257–261 (1984).

    Article  CAS  Google Scholar 

  17. G. J. Schmidt and W. Slavin, Inductively coupled plasma emission spectrometry with internal standardization and subtraction of plasma background fluctuations,Anal. Chem. 54, 2491–2495 (1982).

    Article  CAS  Google Scholar 

  18. K. Wakimoto, T. Tarumi, and Y. Tanaka, eds.Basic Statistics. Handbook for Statistical Analysis with the Personal Computer, vol. 1, Kyoritsu Syuppans, Tokyo, Japan (1984) (Japanese).

    Google Scholar 

  19. G.-L. Liu, B. Tomiyasu, M. Owari, Y. Nihei, N. Sugimoto, and S. Uchiyama, Source apportionment of particulates collected from artificial space by analysis of individual particles,Environ. Sci. 7, 53–58 (1994) (Japanese).

    Google Scholar 

  20. J. Smith and K. Schwarz, A controlled environment system for new trace element deficiencies,J. Nutr. 93, 182–188 (1967).

    PubMed  CAS  Google Scholar 

  21. F. H. Nielsen, D. R. Myron, S. H. Givand, T. J. Zimmerman, and D. A. Ollerich, Nickel deficiency in rats,J. Nutr. 105, 1620–1630 (1975).

    PubMed  CAS  Google Scholar 

  22. K. Yokoi, Atarashii hissu-biryo-genso no mosaku [Exploring new essential trace elements], inSeitainai-kinzoku-genso [Biological Metal Elements], Y. Itokawa and S. Goto, eds., Kohseikan, Tokyo, Japan, pp. 133–148 (1994).

    Google Scholar 

  23. R. Kilpatrick, H. E. Renschler, D. S. Munro, and G. M. Wilson, A comparison of the distribution of42K and86Rb in rabbit and man,J. Physiol. (London) 133, 194–201 (1956).

    CAS  Google Scholar 

  24. S. Ringer, An investigation regarding the action of rubidium and cœsium salts compared with the action of potassium salts on the ventricle of the frog's heart,J. Physiol. (London) 4, 370–379 (1882/1883).

    Google Scholar 

  25. R. F. Loeb, Radioactivity and physiological action of potassium,J. Gen. Physiol. 3, 229–236 (1921).

    Article  Google Scholar 

  26. A. S. Relman, A. M. Roy, and W. B. Schwartz, The acidifying effect of rubidium in normal and potassium-deficient alkalotic rats,J. Clin. Invest. 34, 538–544 (1955).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoi, K., Kimura, M. & Itokawa, Y. Effect of low dietary rubidium on plasma biochemical parameters and mineral levels in rats. Biol Trace Elem Res 51, 199–208 (1996). https://doi.org/10.1007/BF02785438

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785438

Index Entries

Navigation