Skip to main content
Log in

An organic carbon budget for the Mississippi River turbidity plume and plume contributions to air-sea CO2 fluxes and bottom water hypoxia

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We investigated seasonal variability in organic carbon (OC) budgets using a physical-biological model for the Mississippi River turbidity plume. Plume volume was calculated from mixed layer depth and area in each of four salinity subregions based on an extensive set of cruise data and satellite-derived suspended sediment distributions. These physical measurements were coupled with an existing food web model to determine seasonally dependent budgets for labile (reactive on time scales of days to weeks) OC in each salinity subregion. Autochthonous gross primary production (GPP) equaled 1.3×1012 g C yr−1 and dominated labile OC inputs (88% of the budget) because riverine OC was assumed mostly refractory (nonreactive). For perspective, riverine OC inputs amounted to 3.9×1012 g C yr−1, such that physical inputs were 3 times greater than biological inputs to the plume. Annually, microbial respiration (R) accounted for 65% of labile OC losses and net metabolism (GPP—R) for the entire plume was, autotrophic, equaling 5.1×1011 g C yr−1. Smaller losses of labile OC occurred via sedimentation (20%), advection (10%), and export to higher trophic levels (5%). In our present model, annual losses of labile OC are 10% higher than inputs, indicating future improvements are required. Application of our model to estimate air-sea carbon dioxide (CO2) fluxes indicated the plume was a net sink of 2.0×109 mol CO2 yr−1, of which 90% of the total drawdown was from biotic factors. In all seasons, low salinity waters were a source of CO2 (pCO2=560–890 μatm), and intermediate to high salinity waters were a sink of CO2 (pCO2=200–370 μatm). Our model was also used to calculate O2 demand for the development, of regional hypoxia, and our spring and early summer budgets indicated that sedimentation of autochthonous OC from the immediate plume contributed 23% of the O2 demand necessary for establishment of hypoxia in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abril, G., H. Etcheber, B. Delille, M. Frankignoulle, andA. V. Borges. 2003. Carbonate dissolution in the turbid and eutrophic Loire estuary.Marine Ecology Progress Series 259:129–138.

    Article  CAS  Google Scholar 

  • Abril, G. andM. Frankignoulle. 2001. Nitrogen-alkalinity interactions in the highly polluted Scheldt Basin (Belgium).Water Resources 35:844–850.

    CAS  Google Scholar 

  • Benner, R. andS. Opsahl. 2001. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi River plume.Organic Geochemistry 32:597–611.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., T. Filley, K. Dria, andP. Hatcher. 2004. Temporal variability in sources of dissolved organic carbon in the lower Mississippi River.Geochimica et Cosmochimica Acta 68:959–967.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., C. D. Lambert, P. H. Santschi, andL. Guo. 1997. Sources and transport of land-derived particulate and dissolved organic matter in the Gulf of Mexico (Texas shelf/slope): The use of lignin-phenols and loliolides as biomarkers.Organic Geochemistry 27:65–78.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., S. Mitra, andB. McKee. 2002. Sources of terrestrially-derived carbon in the lower Mississippi River and Louisiana shelf: Implications for differential sedimentation and transport at the coastal margin.Marine Chemistry 77:211–223.

    Article  CAS  Google Scholar 

  • Bierman, Jr.,V. J., S. C. Hinz, D.-W. Zhu, W. J. Wiseman Jr.,N. N. Rabalais, andR. E. Turner. 1994. A preliminary mass balance model of primary productivity and dissolved oxygen in the Mississippi River plume/inner Gulf Shelf region.Estuaries 17:886–899.

    Article  CAS  Google Scholar 

  • Bode, A. andQ. Dortch. 1996. Uptake and regeneration of inorganic nitrogen in coastal waters influenced by the Mississippi River: Spatial and seasonal variations.Journal of Plankton Research 18:2251–2268.

    Article  CAS  Google Scholar 

  • Borges, A. V. andM. Frankignoulle. 2002. Distribution and airwater exchange of carbon dioxide in the Scheldt plume off the Belgian coast.Biogeochemistry 59:41–67.

    Article  CAS  Google Scholar 

  • Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.

    Article  CAS  Google Scholar 

  • Brasse, S., M. Nellen, R. Seifert, andW. Michaelis. 2002. The carbon dioxide system in the Elbe estuary.Biogeochemistry 59:25–40.

    Article  CAS  Google Scholar 

  • Breed, G. A., G. A. Jackson, andT. L. Richardson. 2004. Sedimentation, carbon export and food web structure in the Mississippi River plume described by inverse analysis.Marine Ecology Progress Series 278:35–51.

    Article  CAS  Google Scholar 

  • Cai, W.-J. 2003. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. {jtGeophysical Research Letters} 30. [doi:10.1029/2002GL016312].

  • Cai, W.-J., Z. A. Wang, and Y. Wang. 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean.Geophysical Research Letters 30. [doi:10.1029/2003GL017633].

  • Caffrey, J. M. 2004. Factors controlling net ecosystem metabolism in U.S. estuaries.Estuaries 27:90–101.

    CAS  Google Scholar 

  • Carey, A. E., J. R. Pennock, J. C. Lehrter, W. B. Lyons, W. W. Schroeder, and J.-C. Bonzongo. 1999. The role of the Mississippi River in Gulf of Mexico hypoxia. Environmental Institute Publication Number 70, prepared for The Fertilizer Institute by the University of Alabama, Tuscaloosa, Alabama.

  • Chen, X., S. E. Lohrenz, andD. A. Wiesenburg. 2000. Distribution and controlling mechanisms of primary production on the Louisiana-Texas continental shelf.Journal of Marine Systems 25:179–207.

    Article  Google Scholar 

  • Cochrane, J. D. andF. J. Kelly. 1986. Low frequency circulation on the Texas-Louisiana continental shelf.Journal of Geophysical Research 91:645–659.

    Article  Google Scholar 

  • Corbett, D. R., B. McKee, andD. Duncan. 2004. An evaluation of mobile mud dynamics in the Mississippi River deltaic region.Marine geology 209:91–112.

    Article  CAS  Google Scholar 

  • Dagg, M., R. Benner, S. Lohrenz, andD. Lawrence. 2004. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: Plume processes.Continental Shelf Research 24:833–858.

    Article  Google Scholar 

  • Dagg, M. J., T. S. Bianchi, G. A. Breed, W.-J. Cai, S. Duan, H. Liu, B. A. McKee, R. T. Powell, andC. M. Stewart. 2005. Biogeochemical characteristics of the lower Mississippi River, USA, during June 2003.Estuaries 28:664–674.

    CAS  Google Scholar 

  • Dagg, M. J. andT. E. Whitledge. 1991. Concentrations of copepod nauplii associated with the nutrient-rich plume of the Mississippi River.Continental Shelf Research 17:845–857.

    Google Scholar 

  • Diaz, R. J. 2001. Overview of hypoxia around the world.Journal of Environmental Quality 30:275–81.

    CAS  Google Scholar 

  • Dickson, A. G. 1990. Standard potential of the reaction: AgCl(s)+1/2H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic seawater, from 273.15 to 318.15 K.Journal of Chemical Thermodynamics 22:113–127.

    Article  CAS  Google Scholar 

  • Dickson, A. G. andF. J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media.Deep Sea Research 34:1733–1743.

    Article  CAS  Google Scholar 

  • DiMego, G. J., L. F. Bosart, andG. W. Endersen. 1976. An examination of the frequency and mean conditions surrounding frontal incrusions into the Gulf of Mexico and Caribbean Sea.Monthly Weather Review 104:709–718.

    Article  Google Scholar 

  • Dinnel, S. P. andW. J. Wiseman. 1986. Freshwater on the Louisiana and Texas shelf.Continental Shelf Research 6:765–784.

    Article  Google Scholar 

  • Eadie, B. J., B. A. McKee, M. B. Lansing, J. A. Robbins, S. Metz, andJ. H. Trefry. 1994. Records of nutrient-enriched coastal ocean productivity in sediments from the Louisiana continental shelf.Estuaries 17:754–765.

    Article  CAS  Google Scholar 

  • Frankignoulle, M. andA. V. Borges. 2001. European continental shelf as a significant sink for atmospheric carbon dioxide.Global Biogeochemical Cycles 15:569–576.

    Article  CAS  Google Scholar 

  • Frankignoulle, M., I. Bourge, C. Canon, andP. Dauby. 1996b. Distribution of surface seawater partial CO2 pressure in the English Channel and in the Southern Bight of the North Sea.Continental Shelf Research 16:381–395.

    Article  Google Scholar 

  • Frankignoulle, M., I. Bourge, andR. Wollast. 1996a. Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt).Limnology and Oceanography 41:365–369.

    CAS  Google Scholar 

  • Gattuso, J.-P., M. Frankignoulle, andR. Wollast. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems.Annual Review of Ecology and Systematics 29:405–434.

    Article  Google Scholar 

  • Gattuso, J.-P., M. Pichon, andM. Frankignoulle. 1995. Biological control of air-sea CO2 fluxes: Effect of photosynthetic and calcifying marine organisms and ecosystems.Marine Ecology Progress Series 129:307–312.

    Article  Google Scholar 

  • Goñi, M. A., K. C. Ruttenberg, andT. I., Eglinton. 1998. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico.Geochimica et Cosmochimica Acta 62:3055–3075.

    Article  Google Scholar 

  • Guo, L., P. H. Santschi, andT. S. Bianchi. 1999. Dissolved organic matter in estuaries of the Gulf of Mexico, p. 269–299.In T. S. Bianchi, J. R. Pennock, and R. R. Twilley (eds.), Biogeochemistry of Gulf of Mexico Estuaries. Wiley, New York.

    Google Scholar 

  • Hedges, J. I. andR. G. Kiel. 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis.Marine Chemistry 49:81–115.

    Article  CAS  Google Scholar 

  • Hitchcock, G. L., W. J. Wiseman Jr.,W. C. Boicourt, A. J. Mariano, N. Walker, T. A. Nelson, andE. Ryan. 1997. Property fields in an effluent plume of the Mississippi River.Journal of Marine Systems 12:109–126.

    Article  Google Scholar 

  • Jochem, F. J. 2003. Photo- and heterotrophic pico- and nanoplankton in the Mississippi River plume: Distribution and grazing activity.Journal of Plankton Research 25:1201–1214.

    Article  CAS  Google Scholar 

  • Justić, D., N. N. Rabalais, andR. E. Turner. 1997. Impacts of climate change on net productivity of coastal waters: Implication for carbon budgets and hypoxia.Climate Research 8:225–237.

    Article  Google Scholar 

  • Justić, D., N. N. Rabalais, andR. E. Turner. 2002. Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta.Ecological Modeling 152:33–46.

    Article  Google Scholar 

  • Kemp, W. M., E. M. Smith, M. Marvin-Dipasquale, andW. R. Boynton. 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay.Marine Ecology Progress Series 150:229–248.

    Article  CAS  Google Scholar 

  • Kumar, M. D., S. W. A. Naqvi, M. D. George, andD. A. Jayakumar. 1996. A sink for atmospheric carbon dioxide in the northeast Indian Ocean.Journal of Geophysical Research 101:18121–18125.

    Article  CAS  Google Scholar 

  • Legendre, L. andJ. Michaud. 1998. Flux of biogenic carbon in oceans: Size-dependent regulation by pelagic food webs.Marine Ecology Progress Series 164:1–11.

    Article  CAS  Google Scholar 

  • Lewis, E. andD. W. R. Wallace. 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.

    Google Scholar 

  • Liss, P. S. andL. Merlivat. 1986. Air-sea gas exchange rates: Introduction and synthesis, p. 113–127.In P. Buat-Menard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling. Reidel, Dordrecht.

    Google Scholar 

  • Liu, H. andM. J. Dagg. 2003. Interactions between nutrients, phytoplankton growth, and grazing by micro- and mesozooplankton in the plume of the Mississippi River.Marine Ecology Progress Series 258:31–42.

    Article  CAS  Google Scholar 

  • Lohrenz, S. E., M. J. Dagg, andT. E. Whitledge. 1990. Enhanced primary production at the plume/oceanic interface of the Mississippi River.Continental Shelf Research 10:639–664.

    Article  Google Scholar 

  • Lohrenz, S. E., G. L. Fahnenstiel, D. G. Redalje, G. A. Lang, X. Chen, andM. J. Dagg. 1997. Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River.Marine Ecology Progress Series 155:45–54.

    Article  CAS  Google Scholar 

  • Lohrenz, S. E., G. L. Fahnenstiel, D. G. Redalje, G. A. Lang, M. J. Dagg, T. E. Whitledge, andQ. Dortch. 1999. Nutrients, irradiance, and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume.Continental Shelf Research 19:1113–1141.

    Article  Google Scholar 

  • McKee, B. A. 2003. RiOMar: The Transport, Transformation and Fate of Carbon in River-dominated Ocean Margins. Report of the RiOMar Workshop, 1–3 November 2001. Tulane University, New Orleans, Louisiana.

    Google Scholar 

  • McKee, B. A., R. C. Aller, M. A. Allison, T. S. Bianchi, andG. C. Kineke. 2004. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes.Continental Shelf Research 24:899–926.

    Article  Google Scholar 

  • Mehrbach, C., C. H. Culberson, J. E. Hawley, andR. M. Pytkowicz. 1973. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Limnology and Oceanography 18:897–907.

    CAS  Google Scholar 

  • Meybeck, M. 2003. Global analysis of river systems: From Earth system controls to Anthropocene Syndromes.Philosophical Transactions of the Royal Society of London B 358:1935–1955. [doi:10.1098/rstb.2003.1379].

    Article  CAS  Google Scholar 

  • Millero, F. J. 1996. Chemical Oceanography, 2nd edition. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Müller-Karger, F. E., J. J. Walsh, R. H. Evans, andM. B. Meyers. 1991. On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites.Journal of Geophysical Research 96:12645–12665.

    Article  Google Scholar 

  • Pakulski, J. D., R. Benner, R. Amon, B. Eadie, andT. Whitledge. 1995. Community metabolism and nutrient cycling in the Mississippi River plume: Evidence for intense nitrification at intermediate salinities.Marine Ecology Progress Series 117:207–218.

    Article  Google Scholar 

  • Pakulski, J. D., R. Benner, T. Whitledge, R. Amon, B. Eadie, L. Cifuentes, J. Ammerman, andD. Stockwell. 2000. Microbial metabolism and nutrient cycling in the Mississippi and Atchafalaya River plume.Estuarine Coastal and Shelf Science 50:173–184.

    Article  CAS  Google Scholar 

  • Rabalais, N. N., R. E. Turner, D. Justić, Q. Dortch, andW. J. Wiseman Jr. 1999. Characterization of hypoxia: Topic 1 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 15, NOAA Coastal Ocean Program, Silver Springs, Maryland.

    Google Scholar 

  • Rabalais, N. N., R. E. Turner, D. Justić, Q. Dortch, W. J. Wiseman Jr., andB. K. Sen Gupta. 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf.Estuaries 19:387–407.

    Article  Google Scholar 

  • Rabalais, N. N., R. E. Turner, andW. J. Wiseman Jr. 2002. Hypoxia in the Gulf of Mexico, a.k.a. “The Dead Zone”.Annual Review of Ecology and Systematics 33:235–263.

    Article  Google Scholar 

  • Rabalais, N. N., R. E. Turner, W. J. Wiseman, and D. F. Boesch. 1991. A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985–1988, p. 35–47.In R. V. Tyson and T. H. Pearson (eds.) Modern and Ancient Continental Shelf Anoxia. Geological Society Special Publication No. 58, London, U.K.

  • Raymond, P. A., andJ. J. Cole. 2003. Increase in the export of alkalinity from North America's largest river.Science 301:88–91.

    Article  CAS  Google Scholar 

  • Redalje, D. G., S. E. Lohrenz, andG. L. Fahnenstiel. 1994. The relationship between primary production and the vertical export of particulate organic matter in a river-impacted coastal ecosystem.Estuaries 17:829–836.

    Article  CAS  Google Scholar 

  • Rouse, L. J.. 1998. An observational study of the Mississippi-Atchafalaya coastal plume: Final Report, OCS Study MMS 98-0040. U. S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, Louisiana.

    Google Scholar 

  • Rowe, G. T., M. E. Cruz-Kaegi, J. W. Morse, G. S. Boland, andE. G. Escobar Briones. 2002. Sediment community metabolism associated with continental shelf hypoxia, northern Gulf of Mexico.Estuaries 25:1097–1106.

    Article  CAS  Google Scholar 

  • Salisbury, J. E., J. W. Campbell, E. Lindner, L. D. Meeker, F. E. Müller-Karger, andC. J. Vörösmarty 2004. On the seasonal correlation of surface particle fields with wind stress and Mississippi discharge in the northern Gulf of Mexico.Deep-Sea Research II 51:1187–1203.

    Google Scholar 

  • Sarmiento, J. L. andN. Gruber. 2002. Sinks for anthropogenic carbon.Physics Today 55:30–36.

    Article  CAS  Google Scholar 

  • Scavia, D., N. N. Rabalais, R. E. Turner, D. Justić, andW. J. Wiseman, Jr. 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load.Limnology and Oceanography 48:951–956.

    Article  CAS  Google Scholar 

  • Servais, P., A. Anzil, andC. Ventresque. 1989. Simple method for determination of biodegradable dissolved organic carbon in water.Applied Environmental Microbiology 55:2732–2734.

    CAS  Google Scholar 

  • Sklar, F. H., andR. E. Turner. 1981. Characteristics of phytoplankton production off Barataria Bay in an area influenced by the Mississippi River.Contributions in Marine Science 24:93–106.

    CAS  Google Scholar 

  • Smith, S. V., andJ. T. Hollibaugh. 1993. Coastal metabolism and the oceanic organic carbon balance.Review of Geophysics 31:75–89.

    Article  Google Scholar 

  • Smith, Jr.,W. O., andD. J. Demaster. 1996. Phytoplankton biomass and productivity in the Amazon River plume: Correlation with seasonal river discharge.Continental Shelf Search 16:291–319.

    Article  Google Scholar 

  • Stumpf, R. P.. 1992. Remote sensing of water quality in coastal waters, p. 293–305.In Proceedings of the First Thematic Conference on Remote Sensing for Marine and Coastal Environment. Society of Photo-Optical Instrumentation Engineers, Ann Arbor, Michigan.

    Google Scholar 

  • Stumpf, R. P. andJ. R. Pennock. 1989. Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary.Journal of Geophysical Research 94: 14363–14371.

    Article  Google Scholar 

  • Ternon, J. F., C. Oudot, A. Dessier, andD. Diverres. 2000. A seasonal tropical sink for atmospheric CO2 in the Atlantic ocean: The role of the Amazon River discharge.Marine Chemistry 68:183–201.

    Article  CAS  Google Scholar 

  • Thomas, H., Y. Bozec, K. Elkalay, andH. J. W. de Baar. 2004. Enhanced open ocean storage of CO2 from shelf sea pumping.Science 304:1005–1008.

    Article  CAS  Google Scholar 

  • Turner, R. E. andR. L. Allen. 1982. Bottom water oxygen concentration in the Mississippi River Delta Bight.Contributions in Marine Science 25:161–172.

    CAS  Google Scholar 

  • Turner, R. E., andN. N. Rabalais. 1991. Changes in the Mississippi River water quality this century—Implications for coastal food webs.BioScience 41:140–147.

    Article  Google Scholar 

  • Turner, R. E., N. N. Rabalais, andZ. N. Zhang. 1990. Phytoplankton biomass, production and growth limitation on the Huanghe (Yellow River) continental shelf.Continental Shelf Research 10:545–571.

    Article  Google Scholar 

  • Van der Leeden, F., F. L. Troise, andD. K. Todd. 1990. The Water Encyclopedia, 2nd edition. Lewis, Boca Raton, Florida.

    Google Scholar 

  • Ver, L. M., F. T. Maackenzie, andA. Lerman. 1999. Carbon cycle in the coastal zone: Effects of global perturbations and change in the past three centuries.Chemical Geology 159:283–304.

    Article  CAS  Google Scholar 

  • Vézina, A. F.. 1989. Construction of flow networks using inverse methods, p. 62–81.In F. Wulff, J. G. Field and K. H. Mann (eds.), Network Analysis in Marine Ecology. Springer, New York.

    Google Scholar 

  • Vézina, A. F. andT. Platt. 1988. Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods.Marine Ecology Progress Series 42:269–287.

    Article  Google Scholar 

  • Walker, N. D. 1996. Satellite assessment of Mississippi River plume variability: Causes and predictability.Remote Sensing Research 58:21–35.

    Article  Google Scholar 

  • Walker, N. D. andA. B. Hammack. 2000. Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay region, Louisiana.Journal of Coastal Research 16:996–1010.

    Google Scholar 

  • Walker, N. D., A. B. Hammack, and L. J. Rouse. 1997. Predictability of Oceanic and Atmospheric Conditions off the Mississippi Delta: A Field Manual, Louisiana Applied Oil Spill Research and Development Program, OSRADP Technical Report Series 97-011, (CD distribution). Baton Rouge, Louisiana.

  • Walker, N. D., W. J. Wiseman, L. J. Rouse, andA. Babin. 2005. Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River plume.Journal of Coastal Research 21:1228–1244.

    Article  Google Scholar 

  • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean.Journal of Geophysical Research 97:7373–7382.

    Article  Google Scholar 

  • Wanninkhof, R. andW. R. McGillis. 1999. A cubic relationship between air-sea CO2 exchange and wind speed.Geophysical Research Letters 26:1889–1892.

    Article  CAS  Google Scholar 

  • Wawrik, B., andJ. H. Paul. 2004. Phytoplankton community structure and productivity along the axis of the Mississippi River plume in oligotrophic Gulf of Mexico waters.Aquatic Microbial Ecology 35:185–196.

    Article  Google Scholar 

  • Weiss, R. F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas.Marine Chemistry 2:203–15.

    Article  CAS  Google Scholar 

  • Wiseman, Jr.,W. J., S. P. Murray, J. M. Bane, andM. W. Tubman. 1982. Temperature and salinity variability within the Louisiana Bight.Contributions in Marine Science 25:109–120.

    Google Scholar 

  • Wysocki, L. A., T. S. Bianchi, and T. R. Filley. 2005. Sources of organic carbon to a river-dominated coastal shelf: The use of chemical biomarkers to track inputs to sediments. Eos Transactions AGU 86 (18), Joint Assembly Supplement, Abstract OS23A-14. New Orleans, Louisiana.

Sources of Unpublished Materials

  • Bianchi, T. S. unpublished data. Tulane University, New Orleans, Louisiana 70118.

  • Cai, W.-J. personal communication. University of Georgia, Athens, Georgia 30602.

  • Duan, S. and T. S. Bianchi, unpublished data. Tulane University, New Orleans, Louisiana 70118.

  • McKee, B. personal communication. Tulane University, New Orleans, Louisiana 70118.

  • Raymond, P. unpublished data. Yale University, New Haven, Connecticut 06520-8106.

  • Sato, R. and M. J. Dagg. unpublished data. Louisiana Universities Marine Consortium, Chauwin, Louisiana 70344.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca E. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, R.E., Bianchi, T.S., Dagg, M.J. et al. An organic carbon budget for the Mississippi River turbidity plume and plume contributions to air-sea CO2 fluxes and bottom water hypoxia. Estuaries and Coasts: J ERF 29, 579–597 (2006). https://doi.org/10.1007/BF02784284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784284

Keywords

Navigation