Skip to main content
Log in

Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Managanese (Mn) is an essential trace element at low concentrations, but at higher concentrations is neurotoxic. It has several chemical and biochemical properties similar to iron (Fe), and there is evidence of metabolic interaction between the two metals, particularly at the level of absorption from the intestine. The aim of this investigation was to determine whether Mn and Fe interact during the processes involved in uptake from the plasma by the brain and other organs of the rat. Dams were fed control (70 mg Fe/kg), Fe-deficient (5–10 mg Fe/kg), or Fe-loaded (20 g carbonyl Fe/kg) diets, with or without Mn-loaded drinking water (2 g Mn/L), from day 18–19 of pregnancy, and, after weaning the young rats, were continued on the same dietary regimens. Measurements of brain, liver, and kidney Mn and nonheme Fe levels, and the uptake of54Mn and59Fe from the plasma by these organs and the femurs, were made when the rats were aged 15 and 63 d. Organ nonheme Fe levels were much higher than Mn levels, and in the liver and kidney increased much more with Fe loading than did Mn levels with Mn loading. However, in the brain the increases were greater for Mn. Both Fe depletion and loading led to increased brain Mn concentrations in the 15-d/rats, while Fe loading also had this effect at 63 d. Mn loading did not have significant effects on the nonheme Fe concentrations.54Mn, injected as MnCl2 mixed with serum, was cleared more rapidly from the circulation than was59Fe, injected in the form of diferric transferrin. In the 15-d-rats, the uptake of54Mn by brain, liver, kidneys, and femurs was increased by Fe loading, but this was not seen in the 63-d rats. Mn supplementation led to increased59Fe uptake by the brain, liver, and kidneys of the rats fed the control and Fe-deficient diets, but not in the Fe-loaded rats. It is concluded that Mn and Fe interact during transfer from the plasma to the brain and other organs and that this interaction is synergistic rather than competitive in nature. Hence, excessive intake of Fe plus Mn may accentuate the risk of tissue damage caused by one metal alone, particularly in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barbeau,Neurotoxicology 5, 13 (1984).

    PubMed  CAS  Google Scholar 

  2. J. Donaldson,Neurotoxicology 8, 451 (1987).

    PubMed  CAS  Google Scholar 

  3. A. Jacobs, inIron in Biochemistry and Medicine II, A. Jacobs and M. Worwood, eds., Academic, London, pp. 427 (1980).

    Google Scholar 

  4. J. Cammermeyer,J. Neuropath. Exp. Neurol. 6, 111 (1947).

    Google Scholar 

  5. D. T. Dexter, F. R. Wells, A. J. Lees, F. Agid, P. Jenner, and C. D. Marsden,J. Neurochem. 52, 1830 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. J. L. Beard, J. R. Connor, and B. C. Jones,Nutrition Rev. 51, 157 (1993).

    CAS  Google Scholar 

  7. M. Gerlach, D. Ben-Shachar, P. Riederer, and M. B. H. Youdim,J. Neurochem. 63, 793 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. S. Pollack, J. N. George, R. C. Reba, R. M. Kaufman, and W. H. Crosby,J. Clin. Invest. 44, 1470 (1965).

    Article  PubMed  CAS  Google Scholar 

  9. A. B. R. Thomson, D. Olatunbosun, and L. S. Valberg,J. Lab. Clin. Med. 78, 642 (1971).

    PubMed  CAS  Google Scholar 

  10. W. Forth and W. Rummel, inIntestinal Absorption of Metal Ions, Trace Elements and Radionuclides, S. C. Skoryna and D. Waldron-Edward, eds., Pergamon, Oxford, p. 173 (1971).

    Google Scholar 

  11. L. Rossander-Hultén, M. Brune, B. Sandström, B. Lönnerdal, and L. Hallberg,Am. J. Clin. Nutr. 54, 152 (1991).

    PubMed  Google Scholar 

  12. D. C. Borg, and G. C. Cotzias,Nature 182, 1677 (1958).

    Article  PubMed  CAS  Google Scholar 

  13. M. Diez-Ewald, L. R. Weintraub, and W. H. Crosby,Proc. Soc. Exp. Biol. Med. 129, 448 (1968).

    PubMed  CAS  Google Scholar 

  14. R. E. Feeney and S. K. Kamatsu,Struct. Bonding 1, 149 (1966).

    CAS  Google Scholar 

  15. A. T. Tan and R. C. Woodworth,Biochemistry 8, 3711 (1969).

    Article  PubMed  CAS  Google Scholar 

  16. P. Aisen, R. Aasa, and A. G. Redfield,J. Biol. Chem. 214, 4628 (1969).

    Google Scholar 

  17. R. C. Keefer, A. J. Barak, and J. D. Bayett,Biochim. Biophys. Acta 221, 390 (1970).

    PubMed  CAS  Google Scholar 

  18. R. A. Gibbons, S. N. Dixon, K. Hallis, A. M. Russel, B. F. Samson, and H. W. Symonds,Biochim. Biophys. Acta 444, 1 (1976).

    PubMed  CAS  Google Scholar 

  19. W. A. Jefferies, M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter, and D. Y. Mason,Nature 312, 161 (1984).

    Article  Google Scholar 

  20. E. M. Taylor and E. H. Morgan,J. Comp. Physiol. 161, 521 (1991).

    CAS  Google Scholar 

  21. E. M. Taylor, A. Crowe, and E. H. Morgan,J. Neurochem. 57, 1584 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. M. E. Gardiner and E. H. Morgan,Aust. J. Exp. Biol. Med. Sci. 52, 723 (1974).

    Article  PubMed  CAS  Google Scholar 

  23. D. Trinder, E. H. Morgan, and E. Baker,Biochim. Biophys. Acta 943, 440 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. American Institute of Nutrition,J. Nutr. 107, 1340 (1977).

    Google Scholar 

  25. H. A. Huebers, G. M. Brittenham, E. Csiba, and C. A. Finch,J. Lab. Clin. Med. 108 473 (1986).

    PubMed  CAS  Google Scholar 

  26. International Committe for Standardization in Haematology,Br. J. Haematol. 38, 281 (1978).

    Google Scholar 

  27. I. Kaldor,Aust. J. Exp. Biol. Med. Sci. 32, 795 (1954).

    Article  PubMed  CAS  Google Scholar 

  28. G. L. Rehnberg, J. F. Hein, S. D. Carter, R. S. Linko, and J. W. Laskey,J. Toxicol. Environ. Health 9, 175 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. A. Shukla, K. N. Agarwal, and G. S. Shukla,Biol. Trace Elem. Res. 22, 141 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. K. Yokoi, M. Kimura, and I. Yoshinori,Biol. Trace Elem. Res. 29, 257 (1991).

    PubMed  CAS  Google Scholar 

  31. L. S. Maynard and G. C. Cotzias,J. Biol. Chem. 214, 489 (1955).

    PubMed  CAS  Google Scholar 

  32. A. J. Bertinchamps, S. T. Miller, and G. C. Cotzias,Am. J. Physiol. 211, 217 (1966).

    PubMed  CAS  Google Scholar 

  33. D. C. Borg and G. C. Cotzias,J. Clin. Invest. 37, 1269 (1958).

    Article  PubMed  CAS  Google Scholar 

  34. V. A. Murphy, K. C. Wadhwani, Q. R. Smith, and S. I. Rapoport,J. Neurochem. 57, 948 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. O. Rabin, L. Hegedus, J.-M. Bourre, and Q. R. Smith,J. Neurochem. 61, 509 (1993).

    Article  PubMed  CAS  Google Scholar 

  36. M. Aschner and M. Gannon,Brain Res. Bull. 33, 345 (1994).

    Article  PubMed  CAS  Google Scholar 

  37. P. S. Papavasiliou, S. T. Miller, and G. C. Cotzias,Am. J. Physiol. 211, 211 (1966).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chua, A.C.G., Morgan, E.H. Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol Trace Elem Res 55, 39–54 (1996). https://doi.org/10.1007/BF02784167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784167

Index Entries

Navigation