Skip to main content
Log in

Metabolic differences and similarities of selenium in blood and brain of the rat following the administration of different selenium compounds

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A common intermediate, i.e., selenite, was found in the serum of the rat; the maximum levels occurred 3 h after administration independent of chemical forms. This indicates that both the reduction of selenate to selenite, and oxidation of seleno-dl-methionine to selenite existed in the metabolic pathways of the rat. We found that water-soluble selenium compounds led to a similar maximum content in blood and serum, but seleno-dl-methionine had a higher affinity for the brain and, by gel filtration chromatography, for the higher mol-wt (25–100 K Da) fractions of serum protein, when compared with inorganic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Thomson, R. D. H. Stewart, and M. F. Robinson,Br. J. Nutr. 33, 45–54 (1975).

    Article  PubMed  CAS  Google Scholar 

  2. C. D. Thomson and R. D. H. Stewart,Br. J. Nutr. 30, 139–147 (1973).

    Article  PubMed  CAS  Google Scholar 

  3. M. Richold, M. F. Robinson, and R. D. H. Stewart,Br. J. Nutr. 38, 19–29 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. R. F. Burk,Trace Elements in Human Health and Disease, II, Essential and Toxic Elements, A. S. Prasad, ed., Academic, New York, 1976, pp. 105–133.

    Google Scholar 

  5. WHO,Environmental Health Criteria 58, Selenium, published under the joint sponsorship of UNEP, ILO and WHO, Geneva, 1987, pp. 41–43.

  6. Z. J. Wang and A. Peng,J. Environm. Sci. (China) 1, 116–121 (1989) (Eng.).

    CAS  Google Scholar 

  7. K. P. McConnell and G. J. Cho,Am. J. Physiol. 208, 1191–1195 (1965).

    PubMed  CAS  Google Scholar 

  8. H. W. Symonds, B. F. Sansom, D. L. Mather, and M. J. Vagg,Br. J. Nutr. 45, 117–120 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. D. Behne, H. Hilmert, S. Scheid, H. Gessner, and W. Elger,Biochim. Biophysi. Acta 966, 12–21 (1988).

    CAS  Google Scholar 

  10. I. Rosenfield and O. A. Beath, eds.,Selenium Geobatany, Biochemistry, Toxicity and Nutrition, Academic, New York, 1964, pp. 335–365.

    Google Scholar 

  11. R. F. Burk and P. E. Gregory,Arch. Biochem. Biophys. 213, 73–80 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Motsenbocker and A. L. Tappel,Biochim. Biophys. Acta,704, 253 (1982).

    PubMed  CAS  Google Scholar 

  13. M. A. Beilstein and P. H. Whanger,J. Nutr. 113, 2138 (1983).

    PubMed  CAS  Google Scholar 

  14. O. A. Levander,Trace Elements in Human Health and Disease, II, Essential and Toxic Elements, A. S. Prasad, ed., Academic, New York, 1976, pp. 135–163.

    Google Scholar 

  15. W. B. Davidson and C. H. Mcmurray,J. Inorg. Biochem. 34, 1–9 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zi-Jian, W., Jie, Z. & An, P. Metabolic differences and similarities of selenium in blood and brain of the rat following the administration of different selenium compounds. Biol Trace Elem Res 33, 135–143 (1992). https://doi.org/10.1007/BF02784002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784002

Index Entries

Navigation