Skip to main content
Log in

Selenium

Mechanistic aspects of anticarcinogenic action

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is increasingly recognized as a versatile anticarcinogenic agent. Its protective functions cannot be solely attributed to the action of glutathione peroxidase. Instead, selenium appears to operate by several mechanisms, depending on dosage and chemical form of selenium and the nature of the carcinogenic stress. In a major protective function, selenium is proposed to prevent the malignant transformation of cells by acting as a “redox switch” in the activation-inactivation of cellular growth factors and other functional proteins through the catalysis of oxidation-reduction reactions of critical SH groups or SS bonds. The growth-modulatory effects of selenium are dependent on the levels of intracellular GSH and the oxygen supply. In general, growth inhibition is achieved by the Se-mediated stimulation of cellular respiration. Selenium appears to inhibit the replication of tumor viruses and the activation of oncogenes by similar mechanisms. However, it may also alter carcinogen metabolism and protect DNA against carcinogen-induced damage. In additional functions of relevance to its anticarcinogenic activity, selenium acts as an acceptor of biogenic methyl groups, and is involved in the detoxification of metals and of certain xenobiotics. In its interactions with transformed cells at higher concentrations, it may induce effects ranging from metabolic and phenotypical changes, and partial renormalization to selective cytotoxicity owing to reversible or irreversible inhibition of protein and DNA synthesis. Selenium also has immunopotentiating properties. It is required for optimal macrophage and NK cell function. Its protective effects are influenced by synergistic and antagonistic dietary and environmental factors. The latter include a variety of toxic heavy metals and xenobiotic compounds, but they are also influenced by essential elements, such as zinc. The exposure to antagonistic factors must be minimized for the full expression of its anticarcinogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Medina and D. G. Morrison,Pathol. Immunopathol. Res. 7, 187 (1988).

    PubMed  CAS  Google Scholar 

  2. C. Ip,Adv. Exp. Med. Biol. 206, 431 (1986).

    PubMed  CAS  Google Scholar 

  3. J. A. Milner,ACS Symp. Ser. 277, (Xenobiot. Metab.: Nutr. Eff.)277, 267–282 (1985).

    Article  CAS  Google Scholar 

  4. G. N. Schrauzer,Selenium in Medicine and Biology, J. Neve and A. Favier, eds., Walter de Gruyter, Berlin, 1989, pp. 251–261.

    Google Scholar 

  5. a. A. L. Tappel,Curr. Top. Cell. Regul.24, 87 (1984).b J. L. Buttriss and A. T. Diplock,Biochim. Biophys. Acta963, 61 (1988).

    PubMed  CAS  Google Scholar 

  6. J. R. Arthur, F. Nicol, and G. J. Beckett,Biochem. J. 272(2), 5337 (1990).

    Google Scholar 

  7. B. C. Pence,J. Nutr. 121, 138 (1991).

    PubMed  CAS  Google Scholar 

  8. B. C. Pence and F. Buddingh,J. Nutr. 115, 1196 (1985).

    PubMed  CAS  Google Scholar 

  9. C. Ip,J. Amer. Coll. Toxic. 5, 7 (1986).

    CAS  Google Scholar 

  10. G. N. Schrauzer and W. L. Nichols,Toxicology of Metals, S. S. Brown and Y. Kodama, eds., Ellis Horwood Publishers, Chichester, 1987, pp. 107–108.

    Google Scholar 

  11. B. L. Samuels, J. L. Murray, M. B. Cohen, A. R. Safa, B. K. Sinha, A. J. Townsend, M. A. Beckett, and R. R. Weichselbaum,Cancer Res. 51, 521–527 (1991).

    PubMed  CAS  Google Scholar 

  12. a. W. A. Baumgartner,Trace Metals in Health and Disease, N. Kharash, ed., Raven Press, New York, 1979, pp. 287–305.b. W. A. Baumgartner, V. A. Hill, and E. T. Wright,Mech. Aging Develop.8, 311–328 (1978).

    Google Scholar 

  13. M. R. L'Abbe, P. W. F. Fischer, K. D. Trick, and E. R. Chavez,Biol. Trace El. Res. 20(1), 179 (1989).

    Google Scholar 

  14. E. Glattre, Y. Thomassen, S. O. Thoresen, T. Haldorsen, P. G. Lund-Larsen, L. Theodorsen, and J. Aasseth,Int. J. Epidemiol. 18, 45 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. J. Aaseth, H. Frey, E. Glattre, G. Norheim, J. Ringstad, and Y. Thomassen,Biol. Trace El. Res. 24, 147 (1990).

    CAS  Google Scholar 

  16. B. A. Eskin,Proc. Soc. Exp. Biol. Med. 91, 293 (1978).

    CAS  Google Scholar 

  17. A. Geloen, J. R. Arthur, G. J. Beckett, and P. Trayhurn,Biochem. Soc. Trans. 18, 1269 (1990).

    PubMed  CAS  Google Scholar 

  18. D. W. Gruenwedel and M. K. Cruikshank,Toxicol. Appl. Pharmacol. 50, 1 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. S.-Y. Yu, P. Ao, L. M. Wang, S. L. Huang, H. C. Chen, X. P. Lu and Q. Y. Liu,Biol. Trace El. Res. 15, 243 (1988).

    CAS  Google Scholar 

  20. A. Pung, Z. Mei, and S.-Y. Yu,Biol. Trace El. Res. 14, 1, 29 (1987).

    CAS  Google Scholar 

  21. D. Medina and C. J. Oborn,Cancer Res. 43(Suppl.), 2460 (1983).

    CAS  Google Scholar 

  22. R. A. LeBoeuf, B. A. Laishes, and W. G. Hoekstra,Cancer Res. 45, 5496 (1985).

    PubMed  CAS  Google Scholar 

  23. M. A. Tempero, E. E. Deschner, and M. S. Zedeck,Biol. Tr. El. Res. 10, 145 (1986).

    CAS  Google Scholar 

  24. S. Vogl, M. Goldberg, G. Ruhenstroth-Bauer, R. Otter, and A. J. Wendel,Hepatol. 4, 212 (1987).

    Article  CAS  Google Scholar 

  25. W. J. Rhead and G. N. Schrauzer,Bioinorg. Chem. 3, 325 (1974).

    Google Scholar 

  26. M.-L. Hu and A. L. Tappel,J. Inorg. Biochem. 30, 239 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. L. N. Vernie, J. G. Collard, A. P. M. Eker, and A. DeWildt, and I. T. Wilders,Biochem. J. 180, 213 (1979).

    PubMed  CAS  Google Scholar 

  28. K. A. Poirier and J. A. Milner,J. Nutr. 113, 2147 (1983).

    PubMed  CAS  Google Scholar 

  29. J. A. Golczewski and G. D. Frenkel,Biol. Trace El. Res. 20, 115 (1989).

    Article  CAS  Google Scholar 

  30. M. P. Bansal, T. Mukhopadhyay, J. Scott, R. G. Cook, R. Mukhopadhyay, and D. Medina,Carcinogenesis,11, 2071 (1991).

    Article  Google Scholar 

  31. I. D. Capel and A. C. Thornley,Cancer Biochem. Biophys. 6, 167 (1983).

    PubMed  CAS  Google Scholar 

  32. L. N. Vernie, J. G. Collard, A. P. M. Eker, A. De Wildt, and I. T. Wilders,Biochem. J. 180, 213 (1979).

    PubMed  CAS  Google Scholar 

  33. S. M. McCann,Ann. Pharmacol. Toxicol. 22, 491 (1982).

    Article  CAS  Google Scholar 

  34. L. J. Old,Scientific American 258, 59 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. O. Thorlacius-Ussing, A. Flyvbjerg, and J. Esmann,Endocrinology 120, 659 (1987).

    PubMed  CAS  Google Scholar 

  36. S-.Y. Yu, X. P. Lu, and S. D. Liao,Metal Ions in Biology and Medicine, P. Collery, L. A. Poirier, M. Manfait, and J. C. Etienne, eds., John Libbey Eurotext, Paris, 1990, p. 487.

    Google Scholar 

  37. I. M. Verma,Oncogenes and Growth Factors, R. A. Bradshaw and S. Prentis, eds., Elsevier Science Publishers, Amsterdam, 1987, pp. 67–73.

    Google Scholar 

  38. T. H. Rabbits,Metal Ions in Biology and Medicine, P. Collery, L. A. Poirier, M. Manfait, and J. C. Etienne, eds., John Libbey Eurotext, Paris, 1990, pp. 24–32.

    Google Scholar 

  39. P. G. Seeger,Z. F. Zellforsch. 19, 441 (1937).

    Article  Google Scholar 

  40. P. G. Seeger,Arch. Exp. Krebsf. 20, 280 (1937);21, 306 (1938);22, 306 (1939).

    Google Scholar 

  41. G. Calcutt,Brit. J. Cancer 15, 673 (1961).

    PubMed  CAS  Google Scholar 

  42. Y. Tashima, M. Terui, H. Iotoh, H. Mizunuma, R. Kobayashi, and F. Marumo,J. Biochem. (Tokyo) 105(3), 358 (1989).

    CAS  Google Scholar 

  43. W. H. House and R. M. Welch,J. Nutr. 119, 916 (1989).

    PubMed  CAS  Google Scholar 

  44. G. N. Schrauzer, D. A. White, and C. J. Schneider,Bioinorg. Chem. 6, 265 (1976).

    Article  PubMed  CAS  Google Scholar 

  45. W. J. Pories, W. D. Dewys, A. M. Flynn, E. G. Mansour, and W. H. Strain,Adv. Exp. Med. Biol. 91, 243 (1978).

    CAS  Google Scholar 

  46. G. N. Schrauzer, D. A. White, and C. J. Schneider,Bioinorg. Chem. 7, 35 (1977).

    Article  PubMed  CAS  Google Scholar 

  47. I. Kosta, A. R. Byrne, and V. Zelenko,Nature (London) 254, 238 (1975).

    Article  CAS  Google Scholar 

  48. P. O. Wester, D. Brune, and G. Nordberg,Brit. J. Industr. Med. 38, 179–184 (1981).

    PubMed  CAS  Google Scholar 

  49. L. Gerhardsson, D. Brune, I. G. F. Nordberg, and P. O. Wester,Brit. J. Industr. Med. 42, 617 (1985).

    PubMed  CAS  Google Scholar 

  50. G. N. Schrauzer, K. Kuehn, and D. Hamm,Biol. Trace El. Res. 3, 185 (1981).

    CAS  Google Scholar 

  51. G. N. Schrauzer, D. A. White, and C. J. Schneider,Bioinorg. Chem. 9, 245 (1978).

    Article  PubMed  CAS  Google Scholar 

  52. M. Ishizaki, S. Ueno, T. Okasaki, T. Suzuki, and N. Oyamada,Appl. Organomet. Chem. 2, 323 (1988).

    Article  CAS  Google Scholar 

  53. J. H. Gainer,Am. J. Vet. Res. 33, 2579 (1972).

    PubMed  CAS  Google Scholar 

  54. J. H. Gainer and T. W. Pry,J. Vet. Res. 33, 2299 (1972).

    CAS  Google Scholar 

  55. C. Ip and H. E. Ganther,Carcinogenesis 9, 1481 (1988).

    Article  PubMed  CAS  Google Scholar 

  56. R. Cox and S. Goorha,Carcinogenesis (London) 7, 2015 (1986).

    Article  CAS  Google Scholar 

  57. P. Garberg and J. Hoegberg,Biochem. Pharmacol. 36, 1377 (1987).

    Article  PubMed  CAS  Google Scholar 

  58. G. D. Frenkel, D. Falvey, and C. MacVicar, Biol. Trace El. Res.30, 9 (1991).

    CAS  Google Scholar 

  59. L. Yan, J. A. Yee, L. M. Boylan, and J. E. Spallholz,Biol. Trace El. Res. 30, 145 (1991).

    Article  CAS  Google Scholar 

  60. a. G. D. Frenkel, D. Falvey,Molec. Pharmacol.34, 573 (1988).b. ibid. G. D. Frenkel, D. Falvey,Molec. Pharmacol.,39, 281 (1991).

    CAS  Google Scholar 

  61. H. J. Thompson and C. Ip,Biol. Trace El. Res. 30, 163 (1991).

    CAS  Google Scholar 

  62. A. D. Salbe, D. Albanes, M. Winick, P. R. Taylor, D. W. Nixon, O. A. Levander,Nutr. and Cancer 13, 81 (1990).

    Article  CAS  Google Scholar 

  63. G. I. Kallistratos and E. E. Fasske,Nutrition, Growth and Cancer 259 377 (1988).

    CAS  Google Scholar 

  64. a. M. Satoh, N. Imura, M. Akaboshi, and K. Kawai,Kyoto Daigaku Genshiro Jikkensho Gakujutsu Koenkai Yoshishu23, 143 (1989).b. S. Sugiyama, M. Hayakawa, T. Kato, Y. Hanaki, K. Shimizu, and T. Ozawa,Biochem, Biophys. Res. Comm159, 1121 (1989).c. N. Imura, M. Satoh, A. Naganuma, M. Akaboshi, and K. Kavai,Kyoto Daigaku Genshiro Jikkensho (Techn. Report), KURRI-TR-337, 51 (1989).

    CAS  Google Scholar 

  65. E. Nakano, K. Takeshige, Y. Toshima, K. Tokunaga, and S. Minakami,Cardiovasc. Res. 23, 498 (1989).

    Article  PubMed  CAS  Google Scholar 

  66. A. Wu,Xi'in Yike Daxue Xuebao 8, 143 (1987).

    CAS  Google Scholar 

  67. J. Kuehn, U. Dunzendorfer, W. F. Whitmore, and G. N. Schrauzer,Biol. Trace El. Res. 8, 237 (1985).

    CAS  Google Scholar 

  68. A. R. Reo, S. P. Hussain, L. N. Jannu, M. V. Kumari, and A. Ramana,Ind. J. Exp. Biol. 28, 409 (1990).

    Google Scholar 

  69. K. E. Burke, G. F. Combs, Jr., E. G. Gross, K. C. Bhuyan, and H. Abu Libdeh,Nutr. and Cancer 17 (March/April) 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrauzer, G.N. Selenium. Biol Trace Elem Res 33, 51–62 (1992). https://doi.org/10.1007/BF02783992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783992

Keywords

Navigation