Skip to main content
Log in

Computational genomic analysis of hemorrhagic fever viruses

Viral selenoproteins as a potential factor in pathogenesis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A number of distinct viruses are known as hemorrhagic fever viruses based on a shared ability to induce hemorrhage by poorly understood mechanisms, typically involving the formation of blood clots (“disseminated intravascular coagulation”). It is well documented that selenium plays a significant role in the regulation of blood clotting via its effects on the thromboxane/prostacyclin ratio, and effects on the complement system. Selenium has an anticlotting effect, whereas selenium deficiency has a proclotting or thrombotic effect. It is also well documented that extreme dietary selenium deficiency, which is almost never seen in humans, has been associated with hemorrhagic effects in animals. Thus, the possibility that viral selenoprotein synthesis might contribute to hemorrhagic symptoms merits further consideration. Computational genomic analysis of certain hemorrhagic fever viruses reveals the presence of potential protein coding regions (PPCRs) containing large numbers of in-frame UGA codons, particularly in the −1 reading frame. In some cases, these clusterings of UGA codons are very unlikely to have arisen by chance, suggesting that these UGAs may have some function other than being a stop codon, such as encoding selenocysteine. For this to be possible, a downstream selenocysteine insertion element (SECIS) is required. Ebola Zaire, the most notorious hemorrhagic fever virus, has a PPCR with 17 UGA codons, and several potential SECIS elements can be identified in the viral genome. One potential viral selenoprotein may contain up to 16 selenium atoms per molecule. Biosynthesis of this protein could impose an unprecedented selenium demand on the host, potentially leading to severe lipid peroxidation and cell membrane destruction, and contributing to hemorrhagic symptoms. Alternatively, even in the absence of programmed selenoprotein synthesis, it is possible that random slippage errors would lead to increased encounters with UGA codons in overlapping reading frames, and thus potentially to nonspecific depletion of SeC in the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Andrei and E. De Clercq,Antiviral Res. 22, 45–75 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. F. A. Murphy, M. P. Kiley, and S. P. Fisher-Hoch, inVirology, B. N. Fields and D. M. Knipe, eds., Raven, New York, pp. 933–942 (1990).

    Google Scholar 

  3. G. A. Martini and R. A. Siegert, inMarburg Virus Disease, Springer, pp. 1–230 (1971).

  4. K. M. Johnson, J. V. Lange, P. A. Webb, and F. A. Murphy,Lancet,1, 569–571 (1977).

    Article  PubMed  CAS  Google Scholar 

  5. K. G. Ishak, D. H. Walker, J. A. W. Coetzer, J. J. Gardner, and L. Forelkin,Prog. Liver Dis.,3, 495–515 (1982).

    Google Scholar 

  6. M. Bachofen and E. R. Weibel,Chest 65, 14–19 (1974).

    Google Scholar 

  7. B. F. Trump, J. M. Valigorsky, R. T. Jones, W. J. Mergner, J. H. Garcia, and R. A. Cowley,Hum. Pathol. 6, 499–516 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. H. Schnittler, F. Mahner, D. Drenckhahn, H. Klenk, and H. Feldmann,J. Clin. Invest. 91, 1301–1309 (1993).

    PubMed  CAS  Google Scholar 

  9. M. N. Pensiero, J. B. Sharefkin, C. W. Dieffenbach, and J. Hay,J. Virol. 66, 5929–5936 (1992).

    PubMed  CAS  Google Scholar 

  10. R. D. Davenport, T. J. Polak, and S. L. Kunkel,Transfusion 34, 943–949 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. S. Thien, J. Aaskov, T. T. Myint, T. N. Shwe, T. T. Saw, and A. Zaw,J. Med. Virol. 40, 102–106 (1993).

    Article  Google Scholar 

  12. S. P. Fisher-Hoch, G. S. Platt, G. H. Neild, T. Southee, A. Baskerville, R. T. Raymond, G. Lloyd, and D. I. H. Simpson,J. Infect. Dis 152, 887–894 (1985).

    PubMed  CAS  Google Scholar 

  13. M. M. Ricetti, G. C. Guidi, G. Bellisola, R. Marocchella, A. Rigo, and G. Perona,Biol. Trace. Element Res. 46, 113–123 (1994).

    Article  CAS  Google Scholar 

  14. M. Meydani,Biol. Trace. Element Res 33, 79–86 (1992).

    Article  CAS  Google Scholar 

  15. R. I. Levin, B. B. Weksler, A. J. Marcus, and E. A. Jaffe, inBiology of Endothelial Cells E. A. Jaffe, ed., Martinus Nijhoff Publishers, Boston, pp. 228–247 (1984).

    Google Scholar 

  16. A. J. Marcus, M. J. Broekman, B. B. Weksler, E. A. Jaffe, L. B. Safier, H. L. Ullman, N. Islam, and K. Tack-Goldman,Ann. NY Acad. Sci. 40, 195–202 (1982).

    Article  Google Scholar 

  17. S. Moncada,Br. J. Pharmacol. 76, 3–31 (1982).

    PubMed  CAS  Google Scholar 

  18. J. B. Smith,Am. J. Pathol. 99, 743–804 (1980).

    PubMed  CAS  Google Scholar 

  19. M. Hamberg, J. Svensson, and B. Samuelsson,Proc. Natl. Acad. Sci. USA 72, 2994–2998 (1975).

    Article  PubMed  CAS  Google Scholar 

  20. R. Schiavon, G. E. Freeman, G. C. Gundi, G. Perona, M. Zatti, and V. V. Kakkar,Thromb. Res. 34, 389–396 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. N. W. Schoene, V. C. Morris, and O. A. Levander,Nutr. Res. 6, 75 (1986).

    Article  CAS  Google Scholar 

  22. M. L. Eskew, A. Zarkower, W. J. Scheuchenzuber, G. R. Hildenbrandt, R. W. Scholz, and C. C. Reddy,Prostaglandins,46, 319–329 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. G. Perona, R. Schiavon, G. C. Guidi, D. Veneri, and P. Minuz,Thromb. Halmost. 64, 312 (1990).

    CAS  Google Scholar 

  24. J. Feng, Z. G. Feng, and D. J. Wang,Acta Veterinaria et Zootechnica Sinica 18, 249–255 (1987).

    Google Scholar 

  25. Y. Takahashi, H. Kanai, M. Itagaki, A. Noro, and K. Omi,J. Jpn. Vet. Med. Assoc. 48, 71–74 (1995).

    Google Scholar 

  26. S. Hassan, J. Hakkarainen, L. Jonsson, and J. Tyopponen,J. Vet. Med. Ser. A,37, 708–720 (1990).

    Article  CAS  Google Scholar 

  27. A. D. Row, C. G. Gee, A. R. B. Jackson, E. Hall, and P. L. Greentree,Aust. Vet. J. 66, 361–363 (1989).

    Google Scholar 

  28. K. Stoimenov, I. Petrov, K. Khristov, G. Gerasimov, and K. Hristov,Veterinarna-sbirka 87, 31 (1989).

    Google Scholar 

  29. M. Steen, A. Frank, M. Bergsten, and C. Rehbinder,Svensk-Veterinartidning,41, 73–77 (1989).

    Google Scholar 

  30. J. Hou, Z. Jiang, Z. He, Y. Ling, Y. Sun, and T. Xu,Zhangua Yiue Zazhi 73, 645–646 (1993).

    CAS  Google Scholar 

  31. E. W. Taylor, R. G. Nadimpalli, and C. S. Ramanathan, Geonomic structures of viral agents in relation to the biosynthesis of selenoproteins,Biol. Trace Element Res. This vol. (1997).

  32. E. W. Taylor and C. S. Ramanathan.,J. Orthomolecular Med. 10, 131–138 (1996).

    Google Scholar 

  33. B. K. Rima,Biochem. Soc. Trans. 24, 1–13 (1996).

    PubMed  CAS  Google Scholar 

  34. E. W. Taylor, C. S. Ramanathan, R. K. Jalluri, and R. G. Nadimpalli,J. Med. Chem. 37, 2637–2654 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. J. R. Wyatt and I. Tinoco, inThe RNA World, R. F. Gesteland, and J. Atkins, eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 465–496 (1993).

    Google Scholar 

  36. M. J. Berry and P. R. Larsen,Biochem. Soc. Trans. 21, 827–32 (1993).

    PubMed  CAS  Google Scholar 

  37. E. W. Taylor, C. S. Ramanathan, R. G. Nadimpalli, and R. F. Schinazi,Antiviral Res. 26, A271, #86.

  38. E. W. Taylor, C. S. Ramanathan, and R. G. Nadimpalli, in M. Witten, ed.,Computational Medicine, Public Health and Biotechnology: Building a Man in the Machine Part 1, World Scientific, London, pp. 285–309 (1996).

    Google Scholar 

  39. G. N. Schrauzer and J. Sacher,Chem.-Biol. Interact. 91, 199–205 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. M. A. Beck, Q. Shi, V. C. Morris, and O. A. Levander,Nature Med. 1, 433–436 (1995).

    Article  PubMed  CAS  Google Scholar 

  41. E. W. Taylor,Biol. Trace Element Res. 49, 85–95 (1995).

    CAS  Google Scholar 

  42. M. Zuker and P. Steigler,Nucleic Acids Res. 9, 133–148 (1981).

    Article  PubMed  CAS  Google Scholar 

  43. K. K. McCaughan, C. M. Brown, M. E. Dalphin, M. J. Berry, and W. P. Tate,Proc. Natl. Acad. Sci. USA 92, 5431–5435 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. A. Sanchez, S. G. Trappier, B. W. J. Mahy, C. J. Peters, and S. T. Nichol,Proc. Natl. Acad. Sci. USA 93, 3602–3607.

  45. B. Cubitt, C. Oldstone, J. Valcarcel, and J. C. de la Torre,Virus Res. 34, 69–79 (1994).

    Article  PubMed  CAS  Google Scholar 

  46. C. Vanhee-Brossollett, H. Thoreau, N. Serpente, L. D’Auriol, J.-P. Levy, and C. Vaquero,Virology 206, 196–202 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan Will Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanathan, C.S., Taylor, E.W. Computational genomic analysis of hemorrhagic fever viruses. Biol Trace Elem Res 56, 93–106 (1997). https://doi.org/10.1007/BF02778985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02778985

Index Entries

Navigation