Skip to main content
Log in

Spatial declustering weights

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Because of autocorrelation and spatial clustering, all data within a given dataset have not the same statistical weight for estimation of global statistics such mean, variance, or quantiles of the population distribution. A measure of redundancy (or nonredundancy) of any given regionalized random variable Z(uα)within any given set (of size N) of random variables is proposed. It is defined as the ratio of the determinant of the N X Ncorrelation matrix to the determinant of the (N - 1) X (N - 1)correlation matrix excluding random variable Z(uα).This ratio measures the increase in redundancy when adding the random variable Z(uα)to the (N - 1 )remainder. It can be used as declustering weight for any outcome (datum) z(uα). When the redundancy matrix is a kriging covariance matrix, the proposed ratio is the crossvalidation simple kriging variance. The covariance of the uniform scores of the clustered data is proposed as a redundancy measure robust with respect to data clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro M., 1984, Statistical inference of the semivariogram and the quadratic model,in Verly, G., and others, eds., Geostatistics for natural resources characterization: Reidel, Dordrecht, The Netherlands, p. 45–53.

    Google Scholar 

  • Armstrong, M., 1984, Improving the estimation and modeling of the variogram,in Verly, G., and others, eds., Geostatistics for natural resource characterization: Reidel, Dordrecht, The Neth- erlands, p. 1–20.

    Google Scholar 

  • Cressie, N., 1984, Towards resistant geostatistics,in Verly, G., and others, eds., Geostatistics for natural resources characterization: Reidel, Dordrecht, The Netherlands, p. 21–44.

    Google Scholar 

  • Cressie, N., and Hawkins, D., 1980, Robust estimation of the variogram: Math. Geology, v. 12, no. 2, p. 115–126.

    Article  Google Scholar 

  • Crozel, D., and David, M., 1983, The combination of sampling and kriging in the regional esti- mation of coal resources: comment: Math. Geology, v. 15, no. 4, p. 571–574.

    Article  Google Scholar 

  • David, M., 1977, Geostatistical ore reserve estimation: Elsevier, Amsterdam, 364 p.

    Google Scholar 

  • Deutsch, C. V., 1989, DECLUS: A FORTRAN 77 program for determining optimum spatial declustering weight: Computers & Geosciences, v. 15, no. 3, p. 325–332.

    Article  Google Scholar 

  • Deutsch, C. V., and Journel, A. G., 1992, GSLIB: Geostatistical Software Library and user’s guide, Oxford Univ. Press, Oxford, 340 p.

    Google Scholar 

  • Dowd, P. A., 1984, The variogram and kriging: robust and resistant estimators,in Verly, G., and others, eds., Geostatistics for natural resources characterization: Reidel, Dordrecht, The Neth- erlands, p. 91–106.

    Google Scholar 

  • Isaaks, E. H., and Srivastava, R. M., 1988, Spatial continuity measure for probabilistic and deter- ministic geostatistics: Math. Geology, v. 20, no. 4, p. 313–341.

    Article  Google Scholar 

  • Isaaks, E. H., and Srivastava, R. M., 1989, Introduction to applied geostatistics: Oxford Univ. Press, Oxford, 561 p.

    Google Scholar 

  • Journel, A. G., 1977, Kriging in terms of projections: Math. Geology, v. 9, no. 6, p. 563–586.

    Article  Google Scholar 

  • Journel, A. G., 1983, Non-parametric estimation of spatial distributions: Math. Geology, v. 15, no. 3, p. 445–68.

    Article  Google Scholar 

  • Journel, A. G., 1988, New distances measures: the route towards truly non-Gaussian geostatistics: Math. Geology, v. 20, no. 4, p. 459–475.

    Article  Google Scholar 

  • Luenberger, D. G., 1969, Optimization by vector space methods: John Wiley & Sons, New York, 326 p.

    Google Scholar 

  • Matheron, G., 1971, The theory of regionalized variables and its applications: Fascicule 5, Les Cahiers du Centre de Morphologie Mathématique, Ecole des Mines de Paris, Fontainebleau, 212 p.

  • Omre, H., 1984, The variogram and its estimation,in Verly, G., and others, eds., Geostatistics for natural resources characterization: Reidel, Dordrecht, The Netherlands, p. 107–125.

    Google Scholar 

  • Schofield, N., 1993, Using the entropy statistic to infer population parameter from spatially clustered sampling,in Soares, A., ed., Geostatistics Tróia ’92, Volumes 1–2, Quantitative Geology and Geostatistics, Volume 5: Kluwer Acad. Publ. Dordrecht, The Netherlands, p. 109–119.

    Google Scholar 

  • Strang, G., 1988, Linear algebra and its applications (3rd ed.): Saunders College Publ., Harcourt Brace Jovanovich College Publ., Fort Worth, Texas, 505 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bourgault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgault, G. Spatial declustering weights. Math Geol 29, 277–290 (1997). https://doi.org/10.1007/BF02769633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769633

Key Words

Navigation