Skip to main content

A Clustering Approach for Discovering Intrinsic Clusters in Multivariate Geostatistical Data

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9729))

Abstract

Multivariate georeferenced data have become omnipresent in the many scientific fields and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in terms of a concept of dissimilarity. In this work, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the multivariate spatial dependence structure of data. It integrates existing methods to find the optimal cluster number. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is illustrated to the National Geochemical Survey of Australia data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, D.: Geostatistical classification and class kriging. Journal of Geographical Information and Decision Analysis 2, 87–101 (1998)

    Google Scholar 

  2. Allard, D., Guillot, G.: Clustering geostatistical data. In: Proceedings of the Sixth Geostatistical Conference (2000)

    Google Scholar 

  3. Allard, D., Monestiez, P.: Geostatistical segmentation of rainfall data. In: geoENV II: Geostatistics for Environmental Applications, pp. 139–150 (1999)

    Google Scholar 

  4. Ambroise, C., Dang, M., Govaert, G.: Clustering of spatial data by the EM algorithm. In: geoENV I: Geostatistics for Environmental Applications, pp. 493–504 (1995)

    Google Scholar 

  5. Bourgault, G., Marcotte, D., Legendre, P.: The multivariate (co)variogram as a spatial weighting function in classification methods. Mathematical Geology 24(5), 463–478 (1992)

    Article  Google Scholar 

  6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caritat, P., Cooper, M.: National geochemical survey of australia: The geochemical atlas of australia. Geoscience Australia Record 2011/020 (2011)

    Google Scholar 

  8. Charu, C., Chandan, K.: Data Clustering: Algorithms and Applications. Chapman and Hall/CRC (2013)

    Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via EM algorithm (with discussion). Journal of the Royal Statistical Society Ser. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Guillot, G., Kan-King-Yu, D., Michelin, J., Huet, P.: Inference of a hidden spatial tessellation from multivariate data: application to the delineation of homogeneous regions in an agricultural field. Journal of the Royal Statistical Society: Series C (Applied Statistics) 55(3) (2006)

    Google Scholar 

  11. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, New York (1990)

    Book  Google Scholar 

  12. Olivier, M., Webster, R.: A geostatistical basis for spatial weighting in multivariate classification. Mathematical Geology 21, 15–35 (1989)

    Article  Google Scholar 

  13. Pawitan, Y., Huang, J.: Constrained clustering of irregularly sampled spatial data. Journal of Statistical Computation and Simulation 73(12), 853–865 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Romary, T., Ors, F., Rivoirard, J., Deraisme, J.: Unsupervised classification of multivariate geostatistical data: Two algorithms. Computers & Geosciences (2015)

    Google Scholar 

  15. Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  16. Schuenemeyer, J., Drew, L.: Statistics for Earth and Environmental Scientists. Wiley (2011)

    Google Scholar 

  17. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (2009)

    Google Scholar 

  18. Wand, M., Jones, C.: Kernel Smoothing. Monographs on Statistics and AppliedProbability. Chapman and Hall (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francky Fouedjio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fouedjio, F. (2016). A Clustering Approach for Discovering Intrinsic Clusters in Multivariate Geostatistical Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2016. Lecture Notes in Computer Science(), vol 9729. Springer, Cham. https://doi.org/10.1007/978-3-319-41920-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41920-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41919-0

  • Online ISBN: 978-3-319-41920-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics