Skip to main content
Log in

An extension of Jung’s theorem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Theorem. Let a set X⊂Rn have unit circumradius and let B be the unit ball containing X. Put C =conv \(\bar X\) D =diam C (=diam X), k =dim C,d i = √(2i + 2)/i. Then: (i) D∈[dn, 2]; (ii) k≧m where m∈{2,3,...,n} satisfies D∈[dm, dm−1) (di decreases by i); (iii) In case k=m (by (ii), this is always the case when m=n), C contains a k-simplex Δ such that: (α) its vertices are on δB; (β) the centre of B belongs toint Δ; (γ) the inequalitiesλ k (D) ≦lD with

$$\lambda _k (D) = D\sqrt {\frac{{4k - 2D^2 (k - 1)}}{{2 - (k - 2)(D^2 - 2)}}, D \in (d_k ,d_{k - 1} )} $$

are unimprovable estimates for length l of any edge of Δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Danzer, B. Grünbaum and V. Klee,Helly’s Theorem and its relatives, Proceedings of Symposia in Pure Mathematics, Vol. VII (Convexity), AMS, Providence, 1983.

    Google Scholar 

  2. B. Grünbaum,Convex Polytopes, Interscience Publishers, London-New York-Sydney, 1967.

    MATH  Google Scholar 

  3. L. A. Santaló,Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa plana, Math. Notae17 (1959/61), 82–104.

    MathSciNet  Google Scholar 

  4. P. R. Scott,Two inequalities for convex sets in the plane, Bull. Austral. Math. Soc.19 (1978), 131–133.

    MATH  MathSciNet  Google Scholar 

  5. P. R. Scott,A family of inequalities for convex sets, Bull. Austral. Math. Soc.20 (1979), 237–245.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. R. Scott,Sets of constant width and inequalities, Quart. J. Math. Oxford32 (1981), 345–348.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a Canadian NSERC Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekster, B.V. An extension of Jung’s theorem. Israel J. Math. 50, 169–180 (1985). https://doi.org/10.1007/BF02761397

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761397

Keywords

Navigation