Skip to main content
Log in

A solvable model for irreversible quantum phenomena

  • Published:
Lettere al Nuovo Cimento (1971-1985)

Summary

In a recent paper,Ellis,Hagelin,Nanopoulos andSrednicki, motivated by Hawking’s analysis of the breakdown of predictability in gravitational collapse, have proposed a modified equation of motion for density matrices and checked it against upper bounds for the violation of quantum mechanics in various phenomenological situations. Difficulties arising in this model have been pointed out by Banks, Susskind and Peskin. A general feature of this approachi s that the correspondence between symmetries and quantum-mechanical conservation laws is lost. On the other hand, in the case of a specific model, in which rotational invariance is preserved, but conservation of quantum-mechanical angular momentum is released, we show that the modified evolution equation exhibits irreversible evolution of pure states into mixed states of maximal entropy. Consequences of our approach concerning some views about Bell’s theorem are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hawking:Phys. Rev. D,14, 2460 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. M. Wald: Black holes, thermodynamics and time reversibility, inQuantum Gravity II, edited. by C. J. Isham, R. Penrose and D. W. Sciama (Oxford University Press, Oxford, 1981);

    Google Scholar 

  3. S. W. Hawking:Commun. Math. Phys.,87, 395 (1982);

    Article  MathSciNet  ADS  Google Scholar 

  4. D. N. Page:Gen. Rel. Grav.,14, 299 (1982);

    Article  ADS  Google Scholar 

  5. F. J. Tipler:Gen. Rel. Grav.,15, 1139 (1983); and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Ellis, J. J. Hagelin, D. V. Nanopoulos andM. Srednicki:Nucl. Phys. B,244, 125 (1984).

    Article  MathSciNet  Google Scholar 

  7. T. Banks, L. Susskind andM. E. Peskin:Nucl. Phys. B,244, 125 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. G. Emch andG. L. Sewell;J. Math. Phys. (N.T.),9, 946 (1968).

    Article  ADS  MATH  Google Scholar 

  9. V. Gorin:,A. Frigerio, M. Verri, A. Kossakowski andE. G. G. Sudarshan:Rep. Math. Phys.,13, 149 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  10. R. M. Wald:Phys. Rev. D,21, 2742 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Baracca, D. J. Bohm, B. J. Hiley andA. E. G. Stuart:Nuovo Cimenio B,28, 453 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. R. Wilson, J. Lowe andD. K. Butt:J. Phys.,42, 613 (1976).

    Article  ADS  MATH  Google Scholar 

  13. D. J. Bohm andB. J. Hiley:Nuovo Cimenio B,35, 137 (1976).

    Article  ADS  Google Scholar 

  14. R. Balian,Du microscopique au macroscopique, Tome I (Ecole Polytechnique, Ellipses, Paris, 1982), p. 104.

    Google Scholar 

  15. C. Kittel:Elementary Statistical Physics (New York, N. Y., 1938), p. 169.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergia, S., Cannata, F., Giorgini, B. et al. A solvable model for irreversible quantum phenomena. Lett. Nuovo Cimento 43, 113–118 (1985). https://doi.org/10.1007/BF02749588

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02749588

PACS

Navigation