Skip to main content
Log in

Measuring human brain GABA in vivo

Effects of GABA-transaminase inhibition with vigabatrin

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA) plays a pivotal role in suppressing the origin and spread of seizure activity. Low occipital lobe GABA was associated with poor seizure control in patients with complex partial seizures. Vigabatrin irreversibly inhibits GABA-transaminase, raising brain and cerebrospinal fluid (CSF) GABA concentrations. The effect of vigabatrin on occipital lobe GABA concentrations was measured by in vivo nuclear magnetic-resonance spectroscopy. Using a single oral dose of vigabatrin, the rate of GABA synthesis in human brain was estimated at 17% of the Krebs cycle rate. As the daily dose of vigabatrin was increased to up to 3 g, the fractional elevation of brain GABA was similar to CSF increase. Doubling the daily dose from 3 to 6g failed to increase brain GABA further. Increased GABA concentrations appear to reduce GABA synthesis in humans as it does in animals. With traditional antiepileptic drugs, remission of the seizure disorder was associated with normal GABA levels. With vigabatrin, elevated CSF and brain GABA was associated with improved seizure control. Vigabatrin enhances the vesicular and nonvesicular release of GABA. The release of GABA during seizures may be mediated in part by transporter reversal that may serve as an important protective mechanism. During a seizure, this mechanism may be critical in stopping the seizure or preventing its spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann R. F., Engel J., and Phelps M. E. (1986) Identification of seizure-mediating brain structures with the deoxyglucose method: studies of human epilepsy with positron emission tomography, and animal seizure models with contact autoradiography.Adv. Neurol. 44, 921–934.

    PubMed  CAS  Google Scholar 

  • Böhlen P., Huot S., and Palfreyman M. G. (1979) The relationship between GABA concentrations in brain and cerebrospinal fluid.Brain Res. 167, 297–305.

    Article  PubMed  Google Scholar 

  • Behar K. and Boehm D. (1994) Measurement of GABA following GABA-transaminase inhibition by gabaculine: a1H and31P NMR spectroscopic study of rat brain in vivo.Magn. Reson. Med. 31, 660–667.

    Article  PubMed  CAS  Google Scholar 

  • Behar K. L. and Ogino T. (1991) Assignment of resonances in the1H spectrum of rat brain by two-dimensional shift correlated and J-resolved NMR spectroscopy.Magn. Reson. Med. 17, 285–304.

    Article  PubMed  CAS  Google Scholar 

  • Behar K. L. and Ogino T. (1993) Characterization of macromolecule resonances in the1H NMR spectrum of rat brain.Magn. Reson. Med. 30, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Behar K. L., Rothman D. L., Spencer D. D., and Petroff O. A. C. (1994) Analysis of macromolecule resonances in1H NMR spectra of human brain.Magn. Reson. Med. 32, 294–302.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Menachem E. (1989) Pharmacokinetic effects of vigabatrin on cerebrospinal fluid amino acids in humans.Epilepsia 30(Suppl. 3), S12-S14.

    Article  PubMed  Google Scholar 

  • Ben-Menachem E., Perrson L. I., and Schechter P. J. (1988) Effects of single doses of vigabatrin on CSF concentrations of GABA, homocarnosine, homovanillic acid and 5-hydroxyindoleacetic acid in patients with complex partial epilepsy.Epilepsy Res. 2, 96–101.

    Article  CAS  Google Scholar 

  • Ben-Menachem E., Persson L. I., and Schechter P. J. (1989). The effect of different vigabatrin treatment regimens on CSF biochemistry and seizure control in epileptic patients.Br. J. Clin. Pharmacy 27(Suppl. 1), 79S-85S.

    Google Scholar 

  • Ben-Menachem E., Persson Mumford J. P., Haegele K. D., and Huebert N. (1991) The effect of long-term vigabatrin therapy on selected neurotransmitter concentrations in cerebrospinal fluid.J. Child. Neurol. 6(Suppl. 2), 2S11–2S16.

    Article  Google Scholar 

  • Ben-Menachem E., Hamberger A., and Mumford J. (1993) Effect of long-term vigabatrin therapy on GABA and other amino acid concentrations in the central nervous system a case study.Epilepsy Res. 16, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi R., Bittiger H., Schmutz M., Martin P., and Klein M. (1984) Is the estimation of the GABA turnover rate in vivo a tool to differentiate between various types of drugs interfering with the GABA/benzodiazapine/ionophore receptor complex?.Neuropharmacology 23, 815–816.

    Article  CAS  Google Scholar 

  • Bolton J. B., Rimmer E., Williams J., and Richens A. (1989) The effect of vigabatrin on brain and platelet GABA-transaminase activities.Br. J. Clin. Pharmacy 27(Suppl. 1), 35S-42S.

    CAS  Google Scholar 

  • Cendes F., Andermann F., Preul M. C., and Arnold D. L. (1994) Lateralization of temporal lobe epilepsy based on regional metabolic abnormalities in proton magnetic resonance spectroscopic images.Ann. Neurol. 35, 211–216.

    Article  PubMed  CAS  Google Scholar 

  • Cendes F., Stanley J. A., Dubeau F., Andermann F., and Arnold D. L. (1997) Proton magnetic resonance spectroscopic imaging for discrimination of absence and complex partial seizures.Ann. Neurol. 41, 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick D. W., Marson T., and Kadir Z. (1996) Clinical administration of new antiepileptic drugs: an overview of safety and efficacy.Epilepsia 37(Suppl. 6), S17-S22.

    Article  PubMed  CAS  Google Scholar 

  • Chu W. J., Hetherington H. P., Kuzniecky R. I., Vaughan U. T., Twie D. B., Faught R. E., Gilliam F. G., and Elgavish G. A. (1996) Is the intracellular pH different from normal in the focus of patients with temporal lobe epilepsy? A31P NMR study.Neurology 47, 756–760.

    PubMed  CAS  Google Scholar 

  • Connelly A., Jackson G. D., Duncan J. S., King M. D., and Gadian D. G. (1994) Magnetic resonance spectroscopy in temporal lobe epilepsy.Neurology 44, 1411–1417.

    PubMed  CAS  Google Scholar 

  • During M. J. (1994) Dynamic neurochemical alter-ations in human temporal lobe epilepsy.Clin. Neuroscience 2, 53–63.

    Google Scholar 

  • During M. J. and Spencer D. D. (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain.Lancet 341, 1607–1613.

    Article  PubMed  CAS  Google Scholar 

  • During M. J., Ryder K. M., and Spencer D. D. (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy.Nature 376, 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Erlander M. G. and Tobin A. J. (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review.Neurochem. Res. 16, 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Fisher R. S. and Kerrigan J. F. (1995) Vigabatrin: toxicity, inAntiepileptic Drugs, 4th ed. (Levy R. H., Mattson R. H., and Meldrum B. S., eds.) Raven, New York, pp. 931–939.

    Google Scholar 

  • Fountain N. B. and Lothman E. W. (1995) Pathophysiology of status epilepticus.J. Clin. Neurophysiol. 12, 326–342.

    Article  PubMed  CAS  Google Scholar 

  • French J. A., Mosier M., Walker S., Sommerville K., Sussman N., and the Vigabatrin Protocol 024 Investigative Cohort. (1996) A double-blind, placebo-controlled study of vigabatrin three g/day in patients with uncontrolled complex partial seizures.Neurology 46, 54–61.

    PubMed  CAS  Google Scholar 

  • Fyske E. M. and Fonnum F. (1988) Uptake of gamma-aminobutyric acid by a synaptic vesicle fraction isolated from rat brain.J. Neurochem. 50, 1237–1242.

    Article  Google Scholar 

  • Gadian D. G. (1995) N-acetylaspartate and epilepsy.Magn. Reson. Imag. 13, 1193–1195.

    Article  CAS  Google Scholar 

  • Gallo V., Giovannini C., Suergiu R., and Levi G. (1989) Expression of excitatory amino acid receptors by cerebellar cells of the type-2 astrocyte lineage.J. Neurochem. 52, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Gallo V., Patrizio M., and Levi G. (1991) GABA release triggered by the activation of neuronlike non-NMDA receptors in cultured type-2 astrocytes is carrier-mediated.Glia 4, 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Garcia P. A., Laxer K. D., van der Grond J., Hugg J. W., Matson G. B., and Weiner M. W. (1994) Phosphorus magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy.Ann. Neurol. 35, 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Gram L. (1996) Pharmacokinetics of new antiepileptic drugs.Epilepsia 37(Suppl. 6), S12-S16.

    Article  PubMed  CAS  Google Scholar 

  • Gram L., Larsson O. M., Johnsen A., and Schousboe A. (1989) Experimental studies of the influence of vigabatrin on the GABA system.Br. J. Clin. Pharmacy 27(Suppl. 1), 13S-17S.

    CAS  Google Scholar 

  • Grove J., Schechter P. J., Tell G., Koch-Weser J., Sjoerdsma A., Warter J. M., Marescaux C., and Rumbach L. (1981) Increased gamma-aminobutyric acid (GABA), homocarnosine, and beta-alanine in cerebrospinal fluid of patients treated with gamma-vinyl GABA (4-amino-hex-5-enoic acid).Life Sci. 28, 2431–2439.

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R., Novotny E. J., Boulware S. D., Mason G. F., Rothman D. L., Prichard J. W., and Shulman R. G. (1994) Localized13C NMR spectroscopy in the human brain ofamino acid labeling from13C glucose.J. Neurochem. 63, 1377–1385.

    Article  PubMed  CAS  Google Scholar 

  • Halonen T., Lehtinen M., Pitkänen A., Ylinen A., and Riekkinen P. J. (1988) Inhibitory and excitatory amino acids in CSF of patients suffering with complex partial seizures during chronic treatment with gamma-vinyl GABA (vigabatrin).Epilepsy Res. 2, 246–252.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger A., Nystrom B., Larsson S., Silvenius H., and Nordborg C. (1991) Amino acids in the neuronal microenvironment of focal human epileptic lesions.Epilepsy Res. 9, 32–43.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington H., Kuzniecky R., Pan J., Mason G., Morawetz R., Harris C., Faught E., Vaughan T., and Pohost G. (1995) Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T.Ann. Neurol. 38, 396–404.

    Article  PubMed  CAS  Google Scholar 

  • Honmou O., Kocsis J. D., and Richerson G. B. (1995) Gabapentin potentiates the conductance increase induced by nipecotic acid in CA1 pyramidal neurons in vitro.Epilepsy Res. 20, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Horton R. W. (1991) GABA dysfunction in animal models of epilepsy, inGABA Mechanisms in Epilepsy (Tunnicliff G. and Raess B. U., eds.), Wiley-Liss, New York, pp. 121–147.

    Google Scholar 

  • Hugg J. W., Laxer K. D., Matson G. B., Maudsley A. A., Husted C. A., and Weiner M. W. (1992) Lateralization of human focal epilepsy by31P magnetic resonance spectroscopic imaging.Neurology 42, 2011–2018.

    PubMed  CAS  Google Scholar 

  • Hugg J. W., Laxer K. D., Matson G. B., Maudsley A. A., and Weiner M. W. (1993) Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging.Ann. Neurol. 34, 788–794.

    Article  PubMed  CAS  Google Scholar 

  • Hugg J. W., Kuzniecky R. I., Gilliam F. G., Morawetz R. B., Faught R. E., and Hetherington H. P. (1996) Normalization of contralateral metabolic function following temporal lobectomy demonstrated by1H magnetic resonance spectroscopic imaging.Ann. Neurol. 40, 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Jackson G. D., Connelly A., Cross J. H., Gordon I., and Gadian D. G. (1994) Functional magnetic resonance imaging of focal seizures.Neurology 44, 850–856.

    PubMed  CAS  Google Scholar 

  • Jung M. J., Lippert B., Metcalf B. W., Böhlen P., and Schechter P. J. (1977) Gamma-vinyl-GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: effects on brain metabolism in mice.J. Neurochem. 29, 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Jung M. J. and Palfreyman M. G. (1995) Vigabatrin: mechanisms of action, inAntiepileptic Drugs, 4th ed. (Levy R. H., Mattson R. H., and Meldrum B. S., eds.) Raven, New York, pp. 903–913.

    Google Scholar 

  • Kälviäinen R., Halonen T., Pitkanen A., and Reikkinen P. J. (1993) Amino acid levels in the cerebrospinal fluid of newly diagnosed epileptic patients: effect of vigabatrin and carbamazepine monotherapies.J. Neurochem. 60, 1244–1250.

    Article  PubMed  Google Scholar 

  • Kälviäinen R., Merbaala E., Sivenius J., and Reikkinen P. J. (1995) Vigabatrin clinical use, inAntiepileptic Drugs, 4th ed. (Levy R. H., Mattson R. H., and Meldrum B. S., eds.) Raven, New York, pp. 925–930.

    Google Scholar 

  • Kang I. and Miller L. G. (1991) Decreased GABAA receptor subunit mRNA concentrations following chronic lorazepam administration.Br. J. Pharmacol. 103, 1285–1287.

    PubMed  CAS  Google Scholar 

  • Kaura S., Bradford H. F., Young A. M. J., Croucher M. J., and Hughes P. D. (1995) Effect of amygdaloid kindling on the content and release of amino acids from the amygdaloid complex: in vivo and in vitro studies.J. Neurochem. 65, 1240–1249.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis J. D. and Honmou O. (1994) Gabapentin increases GABA-induced depolarization in rat neonatal optic nerve.Neurosci. Lett. 169, 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis J. D. and Mattson R. H. (1996) GABA levels in the brain: a target for new antiepileptic drugs.Neuroscientist 6, 326–334.

    Google Scholar 

  • Kuzniecky R. I. and Jackson G. D. (1995)Magnetic Resonance in Epilepsy. Raven, New York.

    Google Scholar 

  • Kuzniecky R., Elgavish G. A., Hetherington H. P., Evanochko W. T., and Pohost G. M. (1992) In vivo31P nuclear magnetic resonance spectroscopy of human temporal lobe epilepsy.Neurology 42, 1586–1590.

    PubMed  CAS  Google Scholar 

  • Laxer, K. D. (1996)31P magnetic resonance spectroscopy of epilepsy, inNeuroimaging in Epilepsy (Cascino G. D., and Jack C. R., eds.) Butterworth-Heinemann, Boston, pp. 145–150.

    Google Scholar 

  • Leo G. C., Driscoll B. F., Shank R. P., and Kaufman E. (1993) Analysis of [1-13C]d-glucose metabolism in cultured astrocytes and neurons using nuclear magnetic resonance spectroscopy.Dev. Neurosci. 15, 282–288.

    PubMed  CAS  Google Scholar 

  • Levi G. and Gallo V. (1995) Release of neuroactive amino acids from glia, inNeuroglia (Kettenmann H. and Ransom B. R., eds.) Oxford University Press, New York, pp. 815–826.

    Google Scholar 

  • Lloyd K. G., Bossi L., Morselli P. L., Munari C., Rougier M., and Loiseau H. (1986) Altered GABA-mediated synaptic transmission in human epilepsy.Adv. Neurol. 44, 1033–1044.

    PubMed  CAS  Google Scholar 

  • Lortie A., Chiron C., Mumford J., and Dulac O. (1993) The potential for increasing seizure frequency, relapse, and appearance of new seizure types with vigabatrin.Neurology 43, S24-S27.

    PubMed  CAS  Google Scholar 

  • Löscher W. and Frey H. H. (1987) One to three day dose intervals during subchronic treatment of epileptic gerbils with gamma-vinyl GABA: anticonvulsant efficacy and alterations in regional brain GABA levels.Eur. J. Pharmacol. 143, 335–342.

    Article  PubMed  Google Scholar 

  • Löscher W. and Schmidt D. (1994) Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation?Epilepsy Res. 17, 95–134.

    Article  PubMed  Google Scholar 

  • Löscher W., Jäckel R., and Müller F. (1989) Anticonvulsant and proconvulsant effects of inhibitors of GABA degradation in the amygdala-kindling model.Eur. J. Pharmacol. 163, 1–14.

    Article  PubMed  Google Scholar 

  • Lu D., Margouleff C., Rubib E., Labar D., Schaul N., Ishikawa T., Kazumata K., Antonini A., Dhawan V., Hyman R. A., and Eidelberg D. (1997) Temporal lobe epilepsy: correlation of proton magnetic resonance spectroscopy and18F Fluorodeoxyglucose positron emission tomography.Magn. Reson. Med. 37, 18–23.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald R. L. and Meldrum B. S. (1995) Principles of antiepileptic drug action, inAntiepileptic Drugs, 4th ed. (Levy R. H., Mattson R. H., and Meldrum B. S., eds.) Raven, New York, pp. 61–77.

    Google Scholar 

  • Maloteaux J. M., Octave K. N., Gossuin A., Laterre C., and Trouet A. (1987) GABA induces down-regulation in the benzodiazepine-GABA receptor complex in rat cultured neurons.Eur. J. Pharmacol. 144, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Manor D., Rothman D. L., Mason G. F., Hyder F., Petroff O. A. C., and Behar K. L. (1996) The rate of turnover of cortical GABA from, [1–13C] glucose is reduced in rats treated with the GABA-transaminase inhibitor vigabatrin, (gamma-vinyl GABA).Neurochem. Res. 21, 1037–1047.

    Article  Google Scholar 

  • Martin D. L. (1987) Regulatory properties of brain glutamate decarboxylase.Cell Mol. Neurobiol. 7, 237–253.

    Article  PubMed  CAS  Google Scholar 

  • Martin D. L. (1992) Synthesis and release of neuroactive substances by glial cells.Glia 5, 81–94.

    Article  PubMed  CAS  Google Scholar 

  • Martin D. L. (1995) The role of glia in the inactivation of neurotransmitters, inNeuroglia (Kettenmann H. and Ransom B. R., eds.) Oxford University Press, New York, pp. 732–745.

    Google Scholar 

  • Martin D. L. and Rimvall K. (1993) Regulation of gamma-aminobutyric acid synthesis in the brain.J. Neurochem. 60, 395–407.

    Article  PubMed  CAS  Google Scholar 

  • Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G., and Novotny E. J. (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR.J. Cereb. Blood Flow Metab. 18, 12–25.

    Google Scholar 

  • Matthews P. M., Andermann F., and Arnold D. L. (1990) A proton magnetic resonance spectroscopic study of focal epilepsy in humans.Neurology 40, 985–989.

    PubMed  CAS  Google Scholar 

  • Mhartre M. C. and Ticku M. K. (1994) Chronic GABA treatment downregulates the GABAA receptor alpha2 and alpha3 subunit mRNAs as well as polypeptide expression in primary cultured cerebral cortical neurons.Brain Res. Mol. Brain Res. 24, 159–165.

    Article  Google Scholar 

  • Neal M. J., Cunningham J. R., Shah M. A., and Yazulla S. (1989) Immunocytochemical evidence that vigabatrin in rats causes GABA accumulation in glial cells of the retina.Neurosci. Lett. 98, 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Neal M. J. and Shah M. A. (1990) Development of tolerance to the effects of vigabatrin (gammavinyl-GABA) on GABA release from the rat cerebral cortex, spinal cord and retina.Br. J. Pharmacol. 100, 324–328.

    PubMed  CAS  Google Scholar 

  • Ottersen O. P., Zhang N., and Walberg F. (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum.Neuroscience 46, 519–534.

    Article  PubMed  CAS  Google Scholar 

  • Peeling, J. and Sutherland G. (1993)1H magnetic resonance spectroscopy of extracts of human epileptic neocortex and hippocampus.Neurology 43, 589–594.

    PubMed  CAS  Google Scholar 

  • Peng, L., Hertz L., Huang R., Sonnewald U., Petersen S. B., Wetergaard N., Larsson O., and schousboe A. (1993) Utilization of glutamine and TCA cycle constituents as precursors for transmitter glutamate and GABA.Dev. Neurosci. 15, 367–377.

    PubMed  CAS  Google Scholar 

  • Penry J. K., Wilder B. J., and Sachdeo R. C. (1993) Multicenter dose-response study of vigabatrin in adults with focal (partial) epilepsy (abstract).Epilepsia 34(Suppl. 6), 67.

    Google Scholar 

  • Perry T. (1982) Cerebral amino acid pools, inHandbook of Neurochemistry, 2nd ed., vol. 1, (Lajtha A., ed.), Plenum Press, New York, pp. 151–180.

    Google Scholar 

  • Perry T. L., Hansen S., and Gandham S. S. (1981) Postmortem changes of amino, compounds in human and rat brain.J. Neurochem. 36, 406–412.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Behar K. L., and Rothman D. L. (1997) Measuring brain GABA in patients with complex partial seizures, inJasper's Basic Mechanisms of the Epilepsies (Delgado-Escueda A. V., Wilson W., Olsen R. W., and Porter R. J., ed.) Lippincott-Raven, Philadelphia (in press).

    Google Scholar 

  • Petroff O. A. C., Rothman D. L., Behar K. L., Lamoureux D., and Mattson R. H. (1996a) The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy.Ann. Neurol. 39, 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Rothman D. L., Behar K. L., and Mattson R. H. (1996b) Human brain GABA levels rise following initiation of vigabatrin therapy, but fail to rise further with increasing dose.Neurology 46, 1459–1463.

    PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Rothman D. L., Behar K. L., and Mattson R. H. (1996c) Low brain GABA level is associated with poor seizure control.Ann. Neurol. 40, 908–911.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Rothman D. L., Behar K. L., Collins T. L., and Mattson R. H. (1996d) Human brain GABA levels rise rapidly following initiation of vigabatrin therapy.Neurology 47, 1567–1571.

    PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Rothman D. L., Behar K. L., and Mattson R. H. (1996e) Human brain gamma-aminobutyric acid (GABA) levels and seizure control following initiation of vigabatrin therapy.J. Neurochem. 67, 2399–2404.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Rothman D. L., Behar K. L., and Mattson R. H. (1995a) Initial observations on the effect of vigabatrin on the in vivo1H spectroscopic measurements of GABA, glutamate, and glutamine in human brain.Epilepsia 36, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Pleban L. A., and Spencer D. D. (1995b) Symbiosis betweenin vivo andin vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of epileptic human brain.Magn. Reson. Imag. 13, 1197–1211.

    Article  CAS  Google Scholar 

  • Petroff O. A. C., Spencer D., Alger J. R., and Prichard J. W. (1989) High-field proton magnetic resonance spectroscopy of human cerebrum obtained during surgery for epilepsy.Neurology 39, 1197–1202.

    PubMed  CAS  Google Scholar 

  • Pitkänen A., Ylinen A., and Matilainen R. (1993) Longterm antiepileptic efficacy of vigabatrin in drug-refractory epilepsy in mentally retarded patients: a 5 year follow-up study.Arch. Neurol. 50, 24–29.

    PubMed  Google Scholar 

  • Reikkinen P. J., Pitkänen A., Yliinen A., Sivenius J., and Halonen T. (1989a) Specificity of vigabatrin for the GABAergic system in human epilepsy.Epilepsia 30(Suppl. 3), S18-S22.

    Article  Google Scholar 

  • Reikkinen P. J., Ylinen A., Halonen T., Sivenius J., and Pitkänen A. (1989b) Cerebrospinal fluid GABA and seizure control with vigabatrin.Br. J. Clin. Pharmacy 27(Suppl. 1), 87S-94S.

    Google Scholar 

  • Rimvall K. and Martin D. L. (1994) The level of GAD67 protein is highly sensitive to small in-creases in intraneuronal gamma-aminobutyric acid levels.J. Neurochem. 62, 1375–1381.

    Article  PubMed  CAS  Google Scholar 

  • Roberts E. (1986) Failure of GABAergic inhibition: a key to local and global seizures.Adv. Neurol. 44, 319–341.

    PubMed  CAS  Google Scholar 

  • Roberts E. (1988) The establishment of GABA as a neurotransmitter, inGABA and Benzodiazepines Receptors, vol. 1 (Squires R. F., ed.) CRC Press, Boca Raton, FL, pp. 1–21.

    Google Scholar 

  • Roberts E. and Frankel S. (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid.J. Biol. Chem. 187, 55–63.

    PubMed  CAS  Google Scholar 

  • Rothman D. L., Behar K. L., Hetherington H. P., and Shulman R. G. (1984) Homonuclear1H-double resonance difference spectroscopy of the rat brain in vivo.Proc. Natl. Acad. Sci. USA 81, 6330–6334.

    Article  PubMed  CAS  Google Scholar 

  • Rothman D. L., Hanstock C. C., Petroff O. A. C., Novotny E. J., Prichard J. W., and Shulman R. G. (1992) Localized1H NMR measurements of glutamate in the human brain.Magn. Reson. Med. 25, 94–106.

    Article  PubMed  CAS  Google Scholar 

  • Rothman D. L., Petroff O. A. C., Behar K. L., and Mattson R. H. (1993) Localized1H NMR measurements of GABA levels in human brain in vivo.Proc. Natl. Acad. Sci. USA 90, 5662–5666.

    Article  PubMed  CAS  Google Scholar 

  • Schechter P. J. (1989) Clinical pharmacology of vigabatrin.Br. J. Clin. Pharmacy 27(Suppl. 1), 19S-22S.

    CAS  Google Scholar 

  • Schechter P. J. and Sjoedsma A. (1990) Clinical relevance of measuring GABA concentrations in cerebrospinal fluid.Neurochem. Res. 15, 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Schechter P. J., Hanke N. F. J., Grove J., Huebert N., and Sjoerdsma A. (1984) Biochemical and clinical effects of gamma-vinyl-GABA in patients with epilepsy.Neurology 34, 182–186.

    PubMed  CAS  Google Scholar 

  • Schmid L., Bottlaender M., Brouillet E., Fuseau C., and Mazière M. (1996) Vigabatrin modulates benzodiazepine receptor activity in vivo: a positron emission tomography study in baboon.J. Pharmacol. Exptl. Ther. 276, 977–983.

    CAS  Google Scholar 

  • Schousboe A., Larsson O. M., and Seiler N. (1986) Stereoselective uptake of the GABA-transaminase inhibitors gamma-vinyl GABA and gamma-acetylenic GABA into neurons and astrocytes.Neurochem. Res. 11, 1497–1505.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A., Westergaard N., Sonnewald U., Petersen S. B., Yu A. C. H., and Hertz L. (1992) Regulatory role of astrocytes for neuronal biosynthesis and homeostasis of glutamate and GABA.Prog. Brain Res. 94, 199–211.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A., Westergaard N., Sonnewald U., Petersen S. B., Huang R., Peng L., and Hertz L. (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes.Dev. Neurosci. 15, 359–366.

    PubMed  CAS  Google Scholar 

  • Schousboe A. and Westergaard N. (1995) Transport of neuroactive amino acids in astrocytes, inNeuroglia (Kettenmann H. and Ransom B. R., eds.) Oxford University Press, New York, pp. 246–258.

    Google Scholar 

  • Sellstrom A., Sjoberg L. B., and Hamberger A. (1975) Neuronal and glial systems for gamma-aminobutyric acid metabolism.J. Neurochem. 25, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Shank R. P., Leo G. C., and Zielke H. R. (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1–13C]glucose metabolism.J. Neurochem. 61, 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Sherwin A. L. and van Gelder N. M. (1986) Amino acid and catecholamine markers of metabolic abnormalities in human focal epilepsy.Adv. Neurol. 44, 1011–1032.

    PubMed  CAS  Google Scholar 

  • Sherwin A., Robitaille Y., Quesney F., Olivier A., Villemure J., Leblanc R., Feindel W., Andermann E., Gotman J., Andermann F., Ethier R., and Kish S. (1988) Excitatory aminoacids are elevated in human epileptic cerebral cortex.Neurology 38, 920–923.

    PubMed  CAS  Google Scholar 

  • Sonnewald U., Westergaard N., Schousboe A., Svendsen J. S., Unsgard G., and Petersen S. B. (1993) Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons.Neurochem. Int. 22, 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Spencer S. S., Theodore W. H., and Berkovic S. F. (1995) Clinical applications: MRI, SPECT, and PET.Magn. Reson. Imag. 13, 1119–1124.

    Article  CAS  Google Scholar 

  • Spencer S. S. (1996) Long-term outcome after epilepsy surgery.Epilepsia 37, 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Staley K. J., Soldo B. L., and Proctor W. R. (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors.Science 269, 977–981.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen J., Ottersen O. P., Fu-Long T., Gunderson V., Laake J. H., and Nordbo G. (1986) Metabolism and transport of amino acids studied by immunocytochemistry.Med. Biol. 64, 127–132.

    PubMed  CAS  Google Scholar 

  • Tasker J. G. and Dudek F. E. (1991) Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy.Neurochem. Res. 16, 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Taylor C. P. (1994) Emerging perspectives on the mechanism of action of gabapentin.Neurology 44(Suppl. 5), S10-S16.

    PubMed  CAS  Google Scholar 

  • Tunnicliff G. and Raess B. U. (1991) GABA neurotransmitter activity in human epileptogenic brain, inGABA Mechanisms in Epilepsy (Tunnicliff G. and Raess B. U., eds.) Wiley-Liss, New York, pp. 105–119.

    Google Scholar 

  • van Donselaar C. A., Schimsheimer R., Geerts A. T., and Declerck A. C. (1992) Value of the electroencephalogram in adult patients with untreated first seizure.Arch. Neurol. 49, 231–237.

    PubMed  Google Scholar 

  • Vaughan T., and Pohost G. (1995) Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T.Ann. Neurol. 38, 396–404.

    Article  PubMed  Google Scholar 

  • Ward H. K., Thanki C. M., and Bradford H. F. (1983) Glutamine and glucose as precursors of transmitter amino acids: ex vivo studies.J. Neurochem. 40, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Wiesinger H. (1995) Glia-specific enzyme systems, inNeuroglia, (Kettenmann H. and Ransom B. R., eds.) Oxford University Press, New York, pp. 488–499.

    Google Scholar 

  • Wood J. D. and Davies M. (1991) Regulation of the GABAA receptor/ion channel complex by intracellular GABA levels.Neurochem. Res. 16, 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Wood J. D. and Sidhu H. S. (1986) Uptake of gamma-aminobutyric acid by brain tissue preparations: a re-evaluation.J. Neurochem. 46, 739–744.

    Article  PubMed  CAS  Google Scholar 

  • Wood J. H., Hare T. A., Glaeser B. S., Ballenger J. C., and Post R. M. (1979) Low cerebrospinal fluid gamma-aminobutyric acid content in seizure patients.Neurology 29, 1203–1208.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petroff, O.A.C., Rothman, D.L. Measuring human brain GABA in vivo. Mol Neurobiol 16, 97–121 (1998). https://doi.org/10.1007/BF02740605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740605

Index Entries

Navigation