Skip to main content
Log in

Cytomechanics of axonal development

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Mechanical tension is a robust regulator of axonal development of cultured neurons. We review work from our laboratory, using calibrated glass needles to measure or apply tension to chick sensory neurons, chick forebrain neurons, and rat PC12 cells. We survey direct evidence for two different regimes of tension effects on neurons, a fluid-like growth regime, and a nongrowth, elastic regime. Above a minimum tension threshold, we observe growth effects of tension regulating four phases of axonal development:

  1. 1.

    Initiation of process outgrowth from the cell body;

  2. 2.

    Growth cone-mediated elongation of the axon;

  3. 3.

    Elongation of the axon after synaptogenesis, which normally accommodates the skeletal growth of vertebrates; and

  4. 4.

    Axonal elimination by retraction.

Significantly, the quantitative relationship between the force and the growth response is suprisingly similar to the simple relationship characteristic of Newtonian fluid mechanical elements: elongation rate is directly proportional to tension (above the threshold), and this robust linear relationship extends from physiological growth rates to far-above-physiological rates. Thus, tension apparently integrates the complex biochemistry of axonal elongation, including cytoskeletal and membrane dynamics, to produce a simple “force input/growth output” relationship. In addition to this fluid-like growth response, peripheral neurons show elastic behaviors at low tensions (below the threshold tension for growth), as do most cell types. Thus, neurites could exert small static forces without diminution for long periods. In addition, axons of peripheral neurons can actively generate modest tensions, presumably similar to muscle contraction, at tensions near zero. The elastic and force-generating capability of neural axons has recently been proposed to play a major role in the morphogenesis of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss, P. (1941) Nerve Pattern: The mechanics of nerve growth.Growth (Suppl. Third Growth Symp.) 5, 163–203.

    CAS  Google Scholar 

  2. Landis, S. C. (1983) Neuronal growth cones.Ann. Rev. Physiol. 45, 567–580.

    Article  CAS  Google Scholar 

  3. Purves D. and Lichtman, J. W. (1985)Principles of Neural Development. Sinauer, Sunderland, MA.

    Google Scholar 

  4. Bray, D. (1979) Mechanical tension produced by nerve cells in tissue culture.J. Cell Sci. 37, 391–410.

    PubMed  CAS  Google Scholar 

  5. Bray, D. (1984) Axonal growth in response to experimentally applied tension.Dev. Biol. 102, 379–389.

    Article  PubMed  CAS  Google Scholar 

  6. Heidemann, S. R., Landers, J. M., and Hamborg, M. A. (1981) Polarity orientation of axonal microtubules.J. Cell Biol. 91, 661–665.

    Article  PubMed  CAS  Google Scholar 

  7. Sharp, G. A., Weber, K., and Osborn, M. (1982) Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones.Eur. J. Cell Biol. 29, 97–103.

    PubMed  CAS  Google Scholar 

  8. Hill, T. L. and Kirschner, M. W. (1982) Bioenergetic and kinetics of microtubule and actin filament assembly-disassembly.Int. Rev. Cytol. 78, 1–125.

    PubMed  CAS  Google Scholar 

  9. Dennerll, T. J., Joshi, H. C., Steel, V. L., Buxbaum, R. E., and Heidemann, S. R. (1988) Tension and compression in the cytoskeleton: II Quantitative masurements.J. Cell Biol. 107, 665–674.

    Article  PubMed  CAS  Google Scholar 

  10. Lamoureux, P., Buxbaum, R. E., and Heidermann, S. R. (1989) Direct evidence that growth cones pull.Nature 340, 159–162.

    Article  PubMed  CAS  Google Scholar 

  11. Zheng, J., Lamoureux, P., Santiago, V., Dennerll, T., Buxbaum, R. E., and Heidemann, S. R. (1991) Tensile regulation of axonal elongation and initiation.J. Neurosci. 11, 1117–1125.

    PubMed  CAS  Google Scholar 

  12. Lamoureux, P., Altun-Gultekin, Z. F., Lin, C., Wagner, J. A., and Heidemann, S. R. (1997) Rac is required for growth cone function but not neurite assembly.J. Cell Sci. 110, 635–641.

    PubMed  CAS  Google Scholar 

  13. Chada, S., Lamoureux, P., Buxbaum, R. E., and Heidemann, S. R. (1997) Cytomechanics of neurite outgrowth from chick brain neurons.J. Cell Sci. 110, 1179–1186.

    PubMed  CAS  Google Scholar 

  14. Greene, L. and Tischler, A. S. (1982) PC 12 Pheochromocytoma cultures in neurobiological research.Adv. Cell. Neurobiol. 3, 373–414.

    CAS  Google Scholar 

  15. Chambers, R. and Fell, H. B. (1931) Micro-operations of cells in tissue cultures.Proc. Roy. Soc. Lond. B 109, 380–403.

    Article  Google Scholar 

  16. Francis, G. W., Fisher, L. R., and Gamble, R. A. (1987) Direct measurement of cell detachment force on single cells using a new electromechanical method.J. Cell Sci. 87, 519–523.

    PubMed  Google Scholar 

  17. Harris, A. (1973) Location of cellular adhesions to solid substrata.Dev. Biol. 35, 97–114.

    Article  PubMed  CAS  Google Scholar 

  18. Kolega, J. (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium in culture.J. Cell Biol. 102, 1400–1411.

    Article  PubMed  CAS  Google Scholar 

  19. Smith, C. (1994) Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro.J. Neurosci. 14, 384–398.

    PubMed  CAS  Google Scholar 

  20. O’Connor, T. P., Duerr, J. S. and Bentley, D. (1990) Pioneer growth cone steering decisions mediated by a single filopodial contact in situ.J. Neurosci. 10, 3935–3949.

    PubMed  CAS  Google Scholar 

  21. Harrison, R. G. (1910) The outgrowth of the nerve fiber as a mode of cytoplasmic movmement.J. Exp. Zool. 9, 787–846.

    Article  Google Scholar 

  22. Trinkaus, J. P. (1985) Further thoughts on directional cell movement during morphogenesis.J. Neurosci. Res.,13, 1–19.

    Article  PubMed  CAS  Google Scholar 

  23. Aletta, J. M. and Greene, L. A. (1988) Growth cone configuration and advance: a time- lapse study using video-enchanced differential interference contrast microscopy.J. Neurosci. 8, 1425–1435.

    PubMed  CAS  Google Scholar 

  24. Goldberg, D. J. and Burmeister, D. W. (1986) Stages in axon formation: observation of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy.J. Cell Biol. 103, 1921–1931.

    Article  PubMed  CAS  Google Scholar 

  25. Bray, D. (1987) Growth cones: do they pull or are they pushed?Trends Neurosci. 10, 431–434.

    Article  Google Scholar 

  26. Heidemann, S. R., Lamoureux, P., and Buxbaum, R. E. (1990) Growth cone behavior and production of traction force.J. Cell Biol. 111, 1949–1957.

    Article  PubMed  CAS  Google Scholar 

  27. Heidemann, S. R., Lamoureux, P., and Buxbaum, R. E. (1991) On the cytomechanics and fluid dynamics of growth cone motility.J. Cell Sci. Suppl. 15, 35–44.

    PubMed  CAS  Google Scholar 

  28. Elson, E. L. (1988) Cellular mechanics as an indicator of cytoskeletal structure and function.Ann. Rev. Biophys. Chem. 17, 397–430.

    Article  CAS  Google Scholar 

  29. Kerst, A., Chmielewski, C., Livesay, C., Buxbaum, R. E., and Heidemann, S. R. (1990) Liquid crystal domains and thixotropy of F-actin suspensions.Proc. Natl. Acad. Sci. USA 87, 4241–4245.

    Article  PubMed  CAS  Google Scholar 

  30. Bray, D. (1991) Isolated chick neurons for the study of axonal growth inCulturing Nerve Cells (Banker, G. and Goslin, K., eds.), MIT, Cambridge, MA, pp. 119–135.

    Google Scholar 

  31. Bentley, D. and O’Connor, T. P. (1994) Cytoskeletal events in growth cone steering.Curr. Opin. Neurobiol. 4, 43–48.

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka, E., Ho, T., and Kirschner, M. W. (1995) The role of microtubule dynamics in growth cone motility and axonal growth.J. Cell Biol. 128, 139–155.

    Article  PubMed  CAS  Google Scholar 

  33. Craig, A. M., Wyborski, R. J., and Banker, G. (1995) Preferential addition of newly synthesized membrane protein at axonal growth cones.Nature 375, 592–594.

    Article  PubMed  CAS  Google Scholar 

  34. Popov, S., Brown, A., and Poo, M-M. (1993) Forward plasma membrane flow in growing nerve processes.Science 259, 244–246.

    Article  PubMed  CAS  Google Scholar 

  35. Letourneau, P. C., Shattuck, T. A., and Ressler, A. H. (1987) “Pull” and “push” in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol.Cell Motility Cytoskeleton 8, 193–209.

    Article  CAS  Google Scholar 

  36. Marsh, L. and Letourneau, P. C. (1984) Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B.J. Cell Biol. 99, 2041–2047.

    Article  PubMed  CAS  Google Scholar 

  37. Cowan, W. M., Fawcett, J. W., O’Leary, D. D. M., and Stanfield, B. B. (1984) Regressive events in neurogenesis.Science 225, 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  38. Bixby, J. L. (1981) Ultrastructural observations of synapse elimnation in neonatal rabbit skeletal muscle.J. Neurocytol. 10, 81–100.

    Article  PubMed  CAS  Google Scholar 

  39. Riley, D. A. (1981) Ultrastructural evidence for axon retraction during spontaneous elimination of polyneural innervation of the rat soleus muscle.J. Neurocytol. 10, 425–440.

    Article  PubMed  CAS  Google Scholar 

  40. Dennerll, T. J., Lamoureux, P., Buxbaum, R. E., and Heidemann, S. R. (1989) The cytomechanics of axonal elongation and retraction.J. Cell Biol. 109, 3073–3083.

    Article  PubMed  CAS  Google Scholar 

  41. Van Essen, D. C. (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system.Nature 385, 313–318.

    Article  PubMed  Google Scholar 

  42. Craig, A. M. and Banker, G. (1994) Neuronal polarity.Annu. Rev. Neurosci. 17, 267–310.

    Article  PubMed  CAS  Google Scholar 

  43. Buxbaum, R. E. and Heidemann, S. R. (1988) A thermodynamic model for force integration and microtubule assembly during axonal elongation.J. Theor. Biol. 134, 379–390.

    Article  PubMed  CAS  Google Scholar 

  44. Buxbaum, R. E. and Heidemann, S. R. (1992) An absolute rate theory model for tension control of axonal elongation.J. Theor. Biol. 155, 409–426.

    Article  PubMed  CAS  Google Scholar 

  45. Lamoureux, P., Zheng, J., Buxbaum, R. E., and Heidemann, S. R. (1992) A cytomechanical investigation of neurite growth on different culture surfaces.J. Cell Biol. 118, 655–661.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Heidemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidemann, S.R., Lamoureux, P. & Buxbaum, R.E. Cytomechanics of axonal development. Cell Biochem Biophys 27, 135–155 (1997). https://doi.org/10.1007/BF02738107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738107

Index Entries

Navigation