Skip to main content
Log in

Axonal cytomechanics in neuronal development

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

For more than a century, mechanical forces have been predicted to govern many biological processes during development, both at the cellular level and in tissue homeostasis. The cytomechanics of the thin and highly extended neuronal axons have intrigued generations of biologists and biophysicists. However, our knowledge of the biophysics of neurite growth and development is far from complete. Due to its motile behavior and its importance in axonal pathfinding, the growth cone has received significant attention. A considerable amount of information is now available on the spatiotemporal regulation of biochemical signaling and remodeling of the growth cone cytoskeleton. However, the cytoskeletal organization and dynamics in the axonal shaft were poorly explored until recently. Driven by advances in microscopy, there has been a surge of interest in the axonal cytoskeleton in the last few years. A major emerging area of investigation is the relationship between the axonal cytoskeleton and the diverse mechanobiological responses of neurons. This review attempts to summarize our current understanding of the axonal cytoskeleton and its critical role in governing axonal mechanics in the context of neuronal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. Note added in proof: Two new publications now demonstrate the presence of myosin-II associated with the periodic actin rings in the axons of mature rodent hippocampal neurons (Costa et al. 2020; Wang et al. 2020). These finding highlight our assertion that mechanical studies of axons need to be undertaken along with a careful analysis of the developmental maturation of the axonal cytoskeletal.

References

  • Abe I, Ochiai N, Ichimura H, Tsujino A, Sun J and Hara Y 2004 Internodes can nearly double in length with gradual elongation of the adult rat sciatic nerve. J. Orthop. Res. 22 571–577

    PubMed  Google Scholar 

  • Ahmad FJ, Pienkowski TP and Baas PW 1993 Regional differences in microtubule dynamics in the axon. J. Neurosci. 13 856–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad FJ, Hughey J, Wittmann T, Hyman A, Greaser M and Baas PW 2000 Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat. Cell Biol. 2 276

    CAS  PubMed  Google Scholar 

  • Ahmad FJ, He Y, Myers KA, Hasaka TP, Francis F, Black MM and Baas PW 2006 Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7 524–537

    CAS  PubMed  Google Scholar 

  • Ahmadzadeh H, Smith DH and Shenoy VB 2015 Mechanical effects of dynamic binding between tau proteins on microtubules during axonal injury. Biophys. J. 109 2328–2337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed WW and Saif TA 2014 Active transport of vesicles in neurons is modulated by mechanical tension. Sci. Rep. 4 4481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed W, Li T, Rubakhin S, Chiba A, Sweedler J and Saif T 2012 Mechanical tension modulates local and global vesicle dynamics in neurons. Cell. Mol. Bioeng. 5 155–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anava S, Greenbaum A, Jacob EB, Hanein Y and Ayali A 2009 The regulative role of neurite mechanical tension in network development. Biophys. J. 96 1661–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athamneh AI, He Y, Lamoureux P, Fix L, Suter DM and Miller KE 2017 Neurite elongation is highly correlated with bulk forward translocation of microtubules. Sci. Rep. 7 7292

    PubMed  PubMed Central  Google Scholar 

  • Baas PW, Deitch JS, Black MM and Banker GA 1988 Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Nat. Acad. Sci. 85 8335–8339

    CAS  PubMed  Google Scholar 

  • Bamburg JR, Bray D and Chapman K 1986 Assembly of microtubules at the tip of growing axons. Nature 321 788–90

    CAS  PubMed  Google Scholar 

  • Berger SL, Leo-Macias A, Yuen S, Khatri L, Pfennig S, Zhang Y, Agullo-Pascual E, Caillol G, Zhu M-S and Rothenberg E 2018 Localized myosin II activity regulates assembly and plasticity of the axon initial segment. Neuron 97 555–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal R, Pullarkat PA and Melo F 2007 Mechanical properties of axons. Phys. Rev. Lett. 99(1) 018301. https://doi.org/10.1103/PhysRevLett.99.018301

    Article  CAS  PubMed  Google Scholar 

  • Black MM, Slaughter T, Moshiach S, Obrocka M and Fischer I 1996 Tau is enriched on dynamic microtubules in the distal region of growing axons. J. Neurosci. 16 3601–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchoin L, Boujemaa-Paterski R, Sykes C and Plastino J 2014 Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94 235–263

    CAS  PubMed  Google Scholar 

  • Bober BG, Love JM, Horton SM, Sitnova M, Shahamatdar S, Kannan A and Shah SB 2015 Actin-myosin network influences morphological response of neuronal cells to altered osmolarity. Cytoskeleton (Hoboken) 72 193–206

    CAS  Google Scholar 

  • Bray D 1970 Surface movements during the growth of single explanted neurons. Proc. Nat. Acad. Sci. 65 905–910

    CAS  PubMed  Google Scholar 

  • Bray D 1979 Mechanical tension produced by nerve cells in tissue culture. J. Cell Sci. 37 391–410

    CAS  PubMed  Google Scholar 

  • Bray D 1984 Axonal growth in response to experimentally applied mechanical tension. Dev. Biol. 102 379–389

    CAS  PubMed  Google Scholar 

  • Chada S, Lamoureux P, Buxbaum RE and Heidemann SR 1997 Cytomechanics of neurite outgrowth from chick brain neurons. J. Cell Sci. 110 1179–1186

    CAS  PubMed  Google Scholar 

  • Chakrabarty N, Dubey P, Tang Y, Ganguly A, Ladt K, Leterrier C, Jung P and Roy S 2019 Processive flow by biased polymerization mediates the slow axonal transport of actin. J. Cell Biol. 218 112–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B-M and Grinnell AD 1997 Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J. Neurosci. 17 904–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chetta J, Kye C and Shah SB 2010 Cytoskeletal dynamics in response to tensile loading of mammalian axons. Cytoskeleton 67 650–665

    PubMed  Google Scholar 

  • Chetta J, Love JM, Bober BG and Shah SB 2015 Bidirectional actin transport is influenced by microtubule and actin stability. Cell. Mol. Life Sci. 72 4205–4220

    CAS  PubMed  Google Scholar 

  • Condron BG and Zinn K 1997 Regulated neurite tension as a mechanism for determination of neuronal arbor geometries in vivo. Curr. Biol. 7 813–816

    CAS  PubMed  Google Scholar 

  • Costa AR, Sousa SC, Pinto-Costa R, Mateus JC, Lopes CD, Costa AC, Rosa D, Machado D, et al. 2020 The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. Elife 9. https://doi.org/10.7554/eLife.55471

  • D’Este E, Kamin D, Göttfert F, El-Hady A and Hell SW 2015 STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10 1246–1251

    PubMed  Google Scholar 

  • Dai J and Sheetz MP 1995 Axon membrane flows from the growth cone to the cell body. Cell 83 693–701

    CAS  PubMed  Google Scholar 

  • de Rooij R and Kuhl E 2018 Microtubule polymerization and cross-link dynamics explain axonal stiffness and damage. Biophys. J. 114 201–212

    PubMed  PubMed Central  Google Scholar 

  • de Rooij R, Kuhl E and Miller KE 2018 Modeling the axon as an active partner with the growth cone in axonal elongation. Biophys. J. 115 1783–1795

    PubMed  PubMed Central  Google Scholar 

  • Dennerll TJ, Joshi HC, Steel VL, Buxbaum RE and Heidemann SR 1988 Tension and compression in the cytoskeleton of PC-12 neurites. II: quantitative measurements. J. Cell Biol. 107 665–74

    CAS  PubMed  Google Scholar 

  • Dennerll TJ, Lamoureux P, Buxbaum RE and Heidemann SR 1989 The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109 3073–3083

    CAS  PubMed  Google Scholar 

  • Dent EW and Gertler FB 2003 Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40 209–227

    CAS  PubMed  Google Scholar 

  • Dubey S, Bhembre N, Bodas S, Ghose A, Callan-Jones A and Pullarkat PA 2019 The axonal actin-spectrin lattice acts as a tension buffering shock absorber. bioRxiv: https://doi.org/10.1101/510560

    Article  Google Scholar 

  • Edmonds BT and Koenig E 1990 Volume regulation in response to hypo-osmotic stress in goldfish retinal ganglion cell axons regenerating in vitro. Brain Res. 520 159–165

    CAS  PubMed  Google Scholar 

  • Fan A, Stebbings KA, Llano DA and Saif T 2015 Stretch induced hyperexcitability of mice callosal pathway. Front. Cell. Neurosci. 9 292

    PubMed  PubMed Central  Google Scholar 

  • Fan A, Tofangchi A, Kandel M, Popescu G and Saif T 2017 Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter. Sci. Rep. 7 14188

    PubMed  PubMed Central  Google Scholar 

  • Fass JN and Odde DJ 2003 Tensile force-dependent neurite elicitation via anti-β1 integrin antibody-coated magnetic beads. Biophys. J. 85 623–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman EL, Axelrod D, Schwartz M, Heacock A and Agranoff BW 1981 Studies on the localization of newly added membrane in growing neurites. J. Neurobiol. 12 591–598

    CAS  PubMed  Google Scholar 

  • Flanagan LA, Ju Y-E, Marg B, Osterfield M and Janmey PA 2002 Neurite branching on deformable substrates. Neuroreport 13 2411

    PubMed  PubMed Central  Google Scholar 

  • Franze K, Gerdelmann J, Weick M, Betz T, Pawlizak S, Lakadamyali M, Bayer J, Rillich K, Gögler M and Lu Y-B 2009 Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 97 1883–1890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo G, Yee HF and Letourneau PC 2002 Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility. J. Cell Biol. 158 1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly A, Tang Y, Wang L, Ladt K, Loi J, Dargent B, Leterrier C and Roy S 2015 A dynamic formin-dependent deep F-actin network in axons. J. Cell Biol. 210 401–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia KE, Kroenke CD and Bayly PV 2018 Mechanics of cortical folding: stress, growth and stability. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373 https://doi.org/10.1098/rstb.2017.0321

  • George E, Schneider B, Lasek R and Katz M 1988 Axonal shortening and the mechanisms of axonal motility. Cell Motility Cytoskeleton 9 48–59

    CAS  Google Scholar 

  • Georges PC, Miller WJ, Meaney DF, Sawyer ES and Janmey PA 2006 Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90 3012–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gokhin DS, Nowak RB, Khoory JA, Piedra Adl, Ghiran IC and Fowler VM 2015 Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane. Mol. Biol. Cell 26 1699–1710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grevesse T, Dabiri BE, Parker KK and Gabriele S 2015 Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury. Sci. Rep. 5 9475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin JW, George EB, Hsieh S-T and Glass JD 1995 Axonal degeneration and disorders of the axonal cytoskeleton. In The Axon: Structure, Function, and Pathophysiology, Waxman SG, Kocsis JD, Stys PK (eds) p 375. (Oxford: Oxford University Press)

    Google Scholar 

  • Hahn I, Voelzmann A, Liew YT, Costa-Gomes B and Prokop A 2019 The model of local axon homeostasis – explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev. 14 11

    PubMed  PubMed Central  Google Scholar 

  • Hammarlund M, Jorgensen EM and Bastiani MJ 2007 Axons break in animals lacking β-spectrin. J. Cell Biol. 176 269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanein Y, Tadmor O, Anava S and Ayali A 2011 Neuronal soma migration is determined by neurite tension. Neuroscience 172 572–579

    CAS  PubMed  Google Scholar 

  • Harrison RG 1935 The Croonian lecture on the origin and development of the nervous system studied by the methods of experimental embryology. Proc. R. Soc. Lond. Ser. B Biol. Sci. 118 155–196

    Google Scholar 

  • He J, Zhou R, Wu Z, Carrasco MA, Kurshan PT, Farley JE, Simon DJ, Wang G, Han B and Hao J 2016 Prevalent presence of periodic actin–spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc. Nat. Acad. Sci. 113 6029–6034

    CAS  PubMed  Google Scholar 

  • Heidemann SR and Bray D 2015 Tension-driven axon assembly: a possible mechanism. Front. Cell. Neurosci. 9 316

    PubMed  PubMed Central  Google Scholar 

  • Heidemann SR and Buxbaum RE 1990 Tension as a regulator and integrator of axonal growth. Cell Motility Cytoskeleton 17 6–10

    CAS  Google Scholar 

  • Helfand BT, Mendez MG, Pugh J, Delsert C and Goldman RD 2003 A role for intermediate filaments in determining and maintaining the shape of nerve cells. Mol. Biol. Cell 14 5069–5081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgetag CC and Barbas H 2006 Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput. Biol. 2 e22

    PubMed  PubMed Central  Google Scholar 

  • Hirokawa N 1982 Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94 129–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CP, Tang H-Y, Carag C, Speicher DW and Discher DE 2007 Forced unfolding of proteins within cells. Science 317 663–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi HC, Chu D, Buxbaum RE and Heidemann SR 1985 Tension and compression in the cytoskeleton of PC 12 neurites. J. Cell Biol. 101 697–705

    CAS  PubMed  Google Scholar 

  • Katsuno H, Toriyama M, Hosokawa Y, Mizuno K, Ikeda K, Sakumura Y and Inagaki N 2015 Actin migration driven by directional assembly and disassembly of membrane-anchored actin filaments. Cell Rep. 12 648–660

    CAS  PubMed  Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G and Brandt R 1996 Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J. Neurosci. 16 5583–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, Hexum JK, Becerra N, Harki DA, Martin SS and Raiteri R 2015 Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat. Commun. 6 8526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kevenaar JT and Hoogenraad CC 2015 The axonal cytoskeleton: from organization to function. Front. Mol. Neurosci. 8 44

    PubMed  PubMed Central  Google Scholar 

  • Kirkcaldie MT and Collins JM 2016 The axon as a physical structure in health and acute trauma. J. Chem. Neuroanat. 76 9–18

    PubMed  Google Scholar 

  • Koser DE, Thompson AJ, Foster SK, Dwivedy A, Pillai EK, Sheridan GK, Svoboda H, Viana M, da F Costa L and Guck J 2016 Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19 1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg M, Dunn AR and Goodman MB 2014 Mechanical control of the sense of touch by beta-spectrin. Nat. Cell Biol. 16 224–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg M, Stuehmer J, Cueva JG, Fetter R, Spilker K, Cremers D, Shen K, Dunn AR and Goodman MB 2017a Tau like proteins reduce torque generation in microtubule bundles. Biophys. J. 112 29a–30a

    Google Scholar 

  • Krieg M, Stühmer J, Cueva JG, Fetter R, Spilker K, Cremers D, Shen K, Dunn AR and Goodman MB 2017b Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. Elife 6 e20172

    PubMed  PubMed Central  Google Scholar 

  • Krieger CC, An X, Tang H-Y, Mohandas N, Speicher DW and Discher DE 2011 Cysteine shotgun–mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells. Proc. Nat. Acad. Sci. 108 8269–8274

    CAS  PubMed  Google Scholar 

  • Kriz J, Zhu Q, Julien JP and Padjen AL 2000 Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res. 885 32–44

    CAS  PubMed  Google Scholar 

  • Lamoureux P, Buxbaum RE and Heidemann SR 1989 Direct evidence that growth cones pull. Nature 340 159

    CAS  PubMed  Google Scholar 

  • Lamoureux P, Zheng J, Buxbaum RE and Heidemann SR 1992 A cytomechanical investigation of neurite growth on different culture surfaces. J. Cell Biol. 118 655–661

    CAS  PubMed  Google Scholar 

  • Lamoureux P, Heidemann SR, Martzke NR and Miller KE 2010 Growth and elongation within and along the axon. Dev. Neurobiol. 70 135–149

    PubMed  Google Scholar 

  • Laser-Azogui A, Kornreich M, Malka-Gibor E and Beck R 2015 Neurofilament assembly and function during neuronal development. Curr. Opin. Cell Biol. 32 92–101

    CAS  PubMed  Google Scholar 

  • Leach JB, Brown XQ, Jacot JG, DiMilla PA and Wong JY 2007 Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4 26

    PubMed  Google Scholar 

  • Lee JC and Discher DE 2001 Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys. J. 81 3178–3192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leite SC, Sampaio P, Sousa VF, Nogueira-Rodrigues J, Pinto-Costa R, Peters LL, Brites P and Sousa MM 2016 The actin-binding protein α-adducin is required for maintaining axon diameter. Cell Rep. 15 490–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier C, Dubey P and Roy S 2017 The nano-architecture of the axonal cytoskeleton. Nat. Rev. Neurosci. 18 713–726

    CAS  PubMed  Google Scholar 

  • Letourneau PC 2009 Actin in axons: stable scaffolds and dynamic filaments; in Cell Biology of the Axon (New York: Springer) pp 265–290

    Google Scholar 

  • Lillie MA, Vogl AW, Gil KN, Gosline JM and Shadwick RE 2017 Two levels of waviness are necessary to package the highly extensible nerves in rorqual whales. Curr. Biol. 27 673–679

    CAS  PubMed  Google Scholar 

  • Llinares-Benadero C and Borrell V 2019 Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat. Rev. Neurosci. 20 161–176

    CAS  PubMed  Google Scholar 

  • Lorenzo DN, Badea A, Zhou R, Mohler PJ, Zhuang X and Bennett V 2019 betaII-spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport. Proc. Natl. Acad. Sci. USA 116 15686–15695

    CAS  PubMed  Google Scholar 

  • Love JM, Bober BG, Orozco E, White AT, Bremner SN, Lovering RM, Schenk S and Shah SB 2017 mTOR regulates peripheral nerve response to tensile strain. J. Neurophysiol. 117 2075–2084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loverde JR and Pfister BJ 2015 Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology. Front. Cell. Neurosci. 9 308

    PubMed  PubMed Central  Google Scholar 

  • Lowery LA and Van Vactor D 2009 The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10 332–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Lakonishok M and Gelfand VI 2015 Kinesin-1–powered microtubule sliding initiates axonal regeneration in drosophila cultured neurons. Mol. Biol. Cell 26 1296–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukinavičius G, Reymond L, D’este E, Masharina A, Göttfert F, Ta H, Güther A, Fournier M, Rizzo S and Waldmann H 2014 Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11 731

  • Ma Y, Shakiryanova D, Vardya I and Popov SV 2004 Quantitative analysis of microtubule transport in growing nerve processes. Curr. Biol. 14 725–730

    CAS  PubMed  Google Scholar 

  • Maday S, Twelvetrees AE, Moughamian AJ and Holzbaur EL 2014 Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84 292–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KE and Sheetz MP 2006 Direct evidence for coherent low velocity axonal transport of mitochondria. J. Cell Biol. 173 373–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KE and Suter DM 2018 An integrated cytoskeletal model of neurite outgrowth. Front. Cell Neurosci. 12 447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore SW, Zhang X, Lynch CD and Sheetz MP 2012 Netrin-1 attracts axons through FAK-dependent mechanotransduction. J. Neurosci. 32 11574–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay R, Kumar S and Hoh JH 2004 Molecular mechanisms for organizing the neuronal cytoskeleton. Bioessays 26 1017–1025

    CAS  PubMed  Google Scholar 

  • Mutalik SP, Joseph J, Pullarkat PA and Ghose A 2018 Cytoskeletal Mechanisms of Axonal Contractility. Biophys. J. 115 713–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers KA, Tint I, Nadar CV, He Y, Black MM and Baas PW 2006 Antagonistic forces generated by cytoplasmic dynein and myosin‐II during growth cone turning and axonal retraction. Traffic 7 1333–1351

    CAS  PubMed  Google Scholar 

  • O’Toole M, Lamoureux P and Miller KE 2008 A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94 2610–2620

    PubMed  PubMed Central  Google Scholar 

  • Ohara O, Gahara Y, Miyake T, Teraoka H and Kitamura T 1993 Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol. 121 387–95

    CAS  PubMed  Google Scholar 

  • Okabe S and Hirokawa N 1990 Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343 479

    CAS  PubMed  Google Scholar 

  • O’Toole M, Lamoureux P and Miller KE 2015 Measurement of subcellular force generation in neurons. Biophys. J. 108 1027–37

    PubMed  PubMed Central  Google Scholar 

  • Ouyang H, Nauman E and Shi R 2013 Contribution of cytoskeletal elements to the axonal mechanical properties. J. Biol. Eng. 7 21

    PubMed  PubMed Central  Google Scholar 

  • Papandreou MJ and Leterrier C 2018 The functional architecture of axonal actin. Mol. Cell Neurosci. 91 151–159

    CAS  PubMed  Google Scholar 

  • Pfenninger KH 2009 Plasma membrane expansion: a neuron’s Herculean task. Nat. Rev. Neurosci. 10 251–61

    CAS  PubMed  Google Scholar 

  • Pfister BJ, Iwata A, Meaney DF and Smith DH 2004 Extreme stretch growth of integrated axons. J. Neurosci. 24 7978–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister BJ, Bonislawski DP, Smith DH and Cohen AS 2006 Stretch‐grown axons retain the ability to transmit active electrical signals. FEBS Lett. 580 3525–3531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Portran D, Schaedel L, Xu Z, Théry M and Nachury MV 2017 Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 19 391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pullarkat PA, Dommersnes P, Fernández P, Joanny J-F and Ott A 2006 Osmotically driven shape transformations in axons. Phys. Rev. Lett. 96 048104

    PubMed  Google Scholar 

  • Qu Y, Hahn I, Webb SE, Pearce SP and Prokop A 2017 Periodic actin structures in neuronal axons are required to maintain microtubules. Mol. Biol. Cell 28 296–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quiroga S, Bisbal M and Caceres A 2018 Regulation of plasma membrane expansion during axon formation. Dev. Neurobiol. 78 170–180

    PubMed  Google Scholar 

  • Rajagopalan J, Tofangchi A and Saif MTA 2010 Drosophila neurons actively regulate axonal tension in vivo. Biophys. J. 99 3208–3215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinsch SS, Mitchison TJ and Kirschner M 1991 Microtubule polymer assembly and transport during axonal elongation. J. Cell Biol. 115 365–79

    CAS  PubMed  Google Scholar 

  • Richman DP, Stewart RM, Hutchinson JW and Caviness VS, Jr. 1975 Mechanical model of brain convolutional development. Science 189 18–21

    CAS  PubMed  Google Scholar 

  • Rief M, Pascual J, Saraste M and Gaub HE 1999 Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286 553–561

    CAS  PubMed  Google Scholar 

  • Roossien DH, Lamoureux P and Miller KE 2014 Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J. Cell Sci. 127 3593–3602

    CAS  PubMed  Google Scholar 

  • Roth S, Bisbal M, Brocard J, Bugnicourt G, Saoudi Y, Andrieux A, Gory-Fauré S and Villard C 2012 How morphological constraints affect axonal polarity in mouse neurons. PLoS One 7 e33623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi T, Okada M, Kitamura T and Kawasaki K 1993 Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci. Lett. 153 65–8

    CAS  PubMed  Google Scholar 

  • Shefi O, Harel A, Chklovskii DB, Ben-Jacob E and Ayali A 2004 Biophysical constraints on neuronal branching. Neurocomputing 58 487–495

    Google Scholar 

  • Shibasaki K, Murayama N, Ono K, Ishizaki Y and Tominaga M 2010 TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J. Neurosci. 30 4601–4612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siechen S, Yang S, Chiba A and Saif T 2009 Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Nat. Acad. Sci. 106 12611–12616

    CAS  PubMed  Google Scholar 

  • Simpson AH, Gillingwater TH, Anderson H, Cottrell D, Sherman DL, Ribchester RR and Brophy PJ 2013 Effect of limb lengthening on internodal length and conduction velocity of peripheral nerve. J. Neurosci. 33 4536–4539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Šmít D, Fouquet C, Pincet F, Zapotocky M and Trembleau A 2017 Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering. Elife 6 e19907

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Li D, Farrelly O, Miles L, Li F, Kim SE, Lo TY, Wang F, Li T, Thompson-Peer KL, Gong J, Murthy SE, Coste B, Yakubovich N, Patapoutian A, Xiang Y, Rompolas P, Jan LY and Jan YN 2019 The mechanosensitive ion channel piezo inhibits axon regeneration. Neuron 102 373–389 e6

    Google Scholar 

  • Spillane M, Ketschek A, Jones SL, Korobova F, Marsick B, Lanier L, Svitkina T and Gallo G 2011 The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev. Neurobiol. 71 747–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suter DM and Forscher P 2001 Transmission of growth cone traction force through apCAM–cytoskeletal linkages is regulated by Src family tyrosine kinase activity. J. Cell Biol. 155 427–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suter DM and Miller KE 2011 The emerging role of forces in axonal elongation. Prog. Neurobiol. 94 91–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang-Schomer MD, Patel AR, Baas PW and Smith DH 2010 Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 24 1401–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tofangchi A, Fan A and Saif MTA 2016 Mechanism of axonal contractility in embryonic drosophila motor neurons in vivo. Biophys. J. 111 1519–1527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukita S, Tsukita S, Kobayashi T and Matsumoto G 1986 Subaxolemmal cytoskeleton in squid giant axon. II. Morphological identification of microtubule- and microfilament-associated domains of axolemma. J. Cell Biol. 102 1710–25

    CAS  PubMed  Google Scholar 

  • Unsain N, Stefani FD and Cáceres A 2018 The actin/spectrin membrane-associated periodic skeleton in neurons. Front. Synaptic Neurosci. 10 10

    PubMed  PubMed Central  Google Scholar 

  • Vale RD 2003 The molecular motor toolbox for intracellular transport. Cell 112 467–480

    CAS  PubMed  Google Scholar 

  • Van Essen DC 1997 A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385 313

    PubMed  Google Scholar 

  • Vassilopoulos S, Gibaud S, Jimenez A, Caillol G and Leterrier C 2019 Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. Nat. Commun. 10 5803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Naruse K, Stamenovic D, Fredberg JJ, Mijailovich SM, Tolic-Norrelykke IM, Polte T, Mannix R and Ingber DE 2001 Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. USA 98 7765–7770

    CAS  PubMed  Google Scholar 

  • Wang T, Li W, Martin S, Papadopulos A, Joensuu M, Liu C, Jiang A, Shamsollahi G, et al. 2020 Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability. J. Cell Biol. 219 e201902001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss P 1941 Autonomous versus reflexogenous activity of the central nervous system. Proc. Am. Philos. Soc. 84 53–64

    Google Scholar 

  • Wloga D and Gaertig J 2010 Post-translational modifications of microtubules. J. Cell Sci. 123 3447–3455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV and Taber LA 2010 Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132 071013

    PubMed  PubMed Central  Google Scholar 

  • Xu K, Zhong G and Zhuang X 2013 Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339 452–456

    CAS  PubMed  Google Scholar 

  • Zheng J, Lamoureux P, Santiago V, Dennerll T, Buxbaum RE and Heidemann SR 1991 Tensile regulation of axonal elongation and initiation. J. Neurosci. 11 1117–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong G, He J, Zhou R, Lorenzo D, Babcock HP, Bennett V and Zhuang X 2014 Developmental mechanism of the periodic membrane skeleton in axons. Elife 3 e04581

    PubMed Central  Google Scholar 

  • Zhu Q and Asaro RJ 2008 Spectrin folding versus unfolding reactions and RBC membrane stiffness. Biophys. J. 94 2529–2545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Pramod A. Pullarkat and Dr. Nishikant K. Subhedar for their critical reading of the manuscript and their insightful inputs. Research on the mechanical responses of axons in the AG laboratory has been supported by grants from the Department of Biotechnology (BT/PR13310/GBD/27/245/2009), the Science and Engineering Research Board of the Government of India (EMR/2016/003730) and the intramural support from IISER Pune to AG. The Nano Mission Council of the Department of Science and Technology (SR/NM/NS-42/2009) has supported IISER Pune to establish several shared facilities which have aided research in the AG laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sampada P Mutalik or Aurnab Ghose.

Additional information

Corresponding editor: Neeraj Jain

Corresponding editor: Neeraj Jain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutalik, S.P., Ghose, A. Axonal cytomechanics in neuronal development. J Biosci 45, 64 (2020). https://doi.org/10.1007/s12038-020-00029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00029-2

Keywords

Navigation