Skip to main content
Log in

State-of-the-Art on numerical simulation of fiber-reinforced thermoplastic forming processes

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

Short fiber reinforced composites have gained increasing technological importance due to their versatility that lends them to a wide range of applications. These composites are useful because they include a reinforcing phase in which high tensile strengths can be reached, and a matrix that allows to hold the reinforcement and to transfer applied stress to it. It is a well-known fact, that such materials can have excellent mechanical, thermal and electrical properties that make them widely used in industry. During the manufacture process, fibers adopt a preferential orientation that can vary significantly across the geometry. Once the suspension is cooled or cured to make a solid composite, the fiber orientation becomes a key feature of the final product since it affects the elastic modulus, the thermal and electrical conductivities, and the strength of the composite material. In this work we analyzed the state-of-the-art and the recent developments in the numerical modeling of short fiber suspensions involved in industrial flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abdul-Karem, D.M. Binding and M. Sindelar (1993), “Contraction and expansion flows of non-Newtonian fluids”,Compos. Manuf.,4, 109.

    Article  Google Scholar 

  2. S.G. Advani and C.L. Tucker III (1987), “The use of tensors to describe and predict fiber orientation in short fiber composites”,J. Rheol. 31, 751.

    Article  Google Scholar 

  3. S.G. Advani and C.L. Tucker III (1990), “Closure approximations for three-dimensional structure tensors”,J. Rheol.,34, 367.

    Article  Google Scholar 

  4. A. Ahmed and A.N. Alexandrou (1994), “Unsteady flow of semi-concentrated suspensions using finite deformation tensors”,J. Non-Newtonian Fluid Mech. 55, 115.

    Article  Google Scholar 

  5. A. Aik-Kadi and M. Grmela (1994), “Modelling the rheological behaviour of fibre suspensions in viscoelastic media”,J. Non-Newtonian Fluid Mech.,53, 65.

    Article  Google Scholar 

  6. S. Akbar and M.C. Altan (1992), “On the solution of fiber orientation in two-dimensional homogeneous flows”,Polym. Eng. Sci.,32, 810.

    Article  Google Scholar 

  7. M.C. Altan, S.G. Advani, S.I. Guceri and R.G. Pipes (1989), “On the descrption of the orientation state for fiber suspensions in homogenous flows”,J. Rheol. 33, 1129.

    Article  MATH  Google Scholar 

  8. M.C. Altan, S.I. Guceri and R.B. Pipes (1992), “Anisotropic channel flow of fiber suspensions”,J. Non-Newtonian Fluid Mech.,42, 65.

    Article  MATH  Google Scholar 

  9. M.C. Altan and B.N. Rao (1995), “Closed-form solution for the orientation field in a centergated disk”,J. Rheol.,39, 581.

    Article  Google Scholar 

  10. U.M. Ascher, R.M.M. Mattheij and R.D. Russel (1988), “Numerical solution of boundary value problems for ordinary differential equations”, Series inComputational Mathematics, Prentice Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  11. A.B. Arranaga (1970), “Friction reduction characteristics of fibrous and colloidal substances”,Nature,225, 447.

    Article  Google Scholar 

  12. G. Ausias, J.F. Agassant and M. Vincent (1994), “Flow and fiber orientation calculations in reinforced thermoplastic extruded tubes”,Intern. Polym. Proc.,9, 51.

    Google Scholar 

  13. J. Azaiez and G.M. Homsy (1994), “Linear stability of free shear flow of viscoelastic liquids”,J. Fluid Mech.,268, 37.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Azaiez (1996), “Constitutive equations for fiber suspensions in viscoelastic media”,J. Non-Newtonian Fluid Mech.,66, 35.

    Article  Google Scholar 

  15. J. Azaiez, R. Guenette and A. Ait-Kadi (1997), “Investigation of the abrupt contraction flow of fiber suspensions in polymeric fluids”,J. Non-Newtonian Fluid Mech.,73, 289.

    Article  Google Scholar 

  16. J. Azaiez (2000a), “Linear stability of free shear flows of fiber suspensions”,J. Fluid Mech.,404, 179.

    Article  MATH  Google Scholar 

  17. J. Azaiez (2000b), “Reduction of free shear flows instability: effects of polymer versus fiber additives”,J. Non-Newtonian Fluid Mech.,91, 233.

    Article  MATH  Google Scholar 

  18. A. Baloch and M.F. Webster (1995), “A computer simulation of complex flows of fiber suspensions”,Comput. Fluids,24, 135.

    Article  MATH  Google Scholar 

  19. G.K. Batchelor (1970a), “The stress system in suspension of force free particules”,J. Fluid Mech.,41, 545.

    Article  MATH  MathSciNet  Google Scholar 

  20. G.K. Batchelor (1970b), “Slender bodies theory for particles of arbitrary cross section in Stokes flows”,J. Fluid. Mech. 44, 419.

    Article  MATH  MathSciNet  Google Scholar 

  21. N. Berman (1978), “Drag reduction by polymers”,Ann. Rev. Fluid Mech.,10, 47.

    Article  Google Scholar 

  22. G. Chaidron and F. Chinesta (2002a), “On the steady solution of non-linear advection equations in steady recirculating flows”,Computer Meth. Appl. Mech. Eng.,191, 1159.

    Article  MATH  Google Scholar 

  23. G. Chaidron and F. Chinesta (2002b), “Further considerations in steady recirculating flows”,J. Non-Newtonian Fluid Mech., In press.

  24. R.Y. Chang, F.C. Shiao and W.L. Yang (1994), “Simulation of director orientation of liquid crystalline polymers in 2-D flows”,J. Non-Newtonian Fluid Mech.,55, 1.

    Article  Google Scholar 

  25. K. Chiba, K. Nakamura and D.V. Boger (1990), “A numerical solution for the flow of dilute fiber suspensions through an axisymmetric contraction”J. Non-Newtonian Fluid Mech.,35, 1.

    Article  Google Scholar 

  26. K. Chiba and K. Nakamura (1994), “Numerical solution of anisotropic channel flow. Part 2: Fiber orientation in a developing flow through a parallel plate channel”,Trans. J. Text. Mach. Soc. Japan,47, T291-T299.

    Google Scholar 

  27. K. Chiba, T. Yamamoto and K. Nakamura (1994), “Entry flow of dilute fiber suspensions through a tubular contraction”,Nihon Reoroji Gakkaishi,22, 98.

    Google Scholar 

  28. K. Chiba and K. Nakamura (1995), “On numerical solution of anisotropic channel flow. Part 3: Discussion on a closure approximation”,Nihon Reoroji Gakkaishi 23, 159.

    Google Scholar 

  29. K. Chiba and K. Nakamura (1996a), “Numerical solution of fiber orientation in a recirculating flow. Part 1: Orientation of a single fiber in a recirculating flow within a slot”,Trans. J. Text. Mach. Soc. Japan,49, T85-T91.

    Google Scholar 

  30. K. Chiba and K. Nakamura (1996b), “Numerical solution of fiber orientation in a recirculating flow. Part 2: Analysis of fiber orientation in a recirculating flow within a slot using a statistical method”,Trans. J. Text. Mach. Soc. Japan,49, T107-T113.

    Google Scholar 

  31. K. Chiba, K. Kawata and K. Nakamura (1997), “Numerical solution of fiber orientation in a recirculating flow. Part 3: Fiber orientation in a recirculating flow within a salient corner of an abrupt expansion channel”,Trans. J. Text. Mach. Soc. Japan,50, T1-T8.

    Google Scholar 

  32. K. Chiba and K. Nakamura (1998), “Numerical solution of fiber suspension flow through a complex channel”,J. Non-Newtonian Fluid Mech.,78, 167.

    Article  MATH  Google Scholar 

  33. K. Chiba, K. Yasuda and K. Nakamura (2001), “Numerical solution of fiber suspension flow through a parallel plate channel by coupling flow field with fiber orientation distribution”,Proc. 3rd Pacific Rim Conference on Rheol., Vancouver.

  34. F. Chinesta and G. Chaidron (2001), “On the steady solution of linear advection problems in steady recirculating flows”,J. Non-Newtonian Fluid Mech.,98, 65.

    Article  MATH  Google Scholar 

  35. F. Chinesta, T. Mabrouki and A. Ramon (2002), “Some difficulties in the flow front treatment in fixed mesh simulations of composites forming processes”,5th Esaform Conference.

  36. S. Chono and M. Makino (1995), “Numerical simulation of fiber suspension flow between parallel plates”,Trans-B, Mach. Soc. Japan,61, 3190.

    Google Scholar 

  37. R.M. Christensen (1990), “A critical evaluation for a class of micro-mecanics models”,J. Mech. Phys. Solids,38, 379.

    Article  Google Scholar 

  38. S.T. Chung and T.H. Kwon (1995), “Numerical simulation of fiber orientation in injection molding of short-fiber- reinforced thermoplastics”,Polym. Eng. Sci.,35, 604.

    Article  Google Scholar 

  39. T. Coupez, D. Daboussy and E. Bigot (1999), “Mesh adaptation for 3D injection numerical simulation”,15th Polymer Processing Society Conference.

  40. J.W. Daily and G. Bugliarello (1961), “Basic data for dilute fiber suspensions in uniform flow with shear”,TAPPI,44, 497.

    Google Scholar 

  41. S.M. Dinh and R.C. Armstrong (1984), “A rheological equation of state for semiconcentrated fiber suspensions”,J. Rheol.,28, 207.

    Article  MATH  Google Scholar 

  42. M. Doi (1981), “Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases”,J. Polym. Sci., Polym. Phys. Ed.,19, 229.

    Article  Google Scholar 

  43. A.A. Draad and M.A. Hulsen (1995), “Transition from laminar to turbulent flow for non-Newtonian fluids”, InAdvances in Turbulence V, R. Benzi (ed.), 105.

  44. P.G. Drazin and W.H. Reid (1981),Hydrodynamic Stability, Cambridge University Press.

  45. H.D. Ellis (1970), “Effects of shear treatment on drag reducing polymer solutions and fiber suspensions”,Nature,226, 352.

    Article  Google Scholar 

  46. J.L. Ericksen (1960a), “Anisotropic fluids”,Arch. Rat. Mech. Anal.,4, 231.

    MATH  MathSciNet  Google Scholar 

  47. J.L. Ericksen (1960b), “Transversely isotropic fluids”,Kolloidzeitschrift,173, 117.

    Article  Google Scholar 

  48. J.L. Ericksen (1966), “Instability in Couette flow of anisotropic fluids”,Quart. J. Mech. App. Math.,19, 455.

    Article  MathSciNet  Google Scholar 

  49. K.A. Ericsson, S. Toll and J.A.E. Manson (1997), “The two-way interaction between anisotropic flow and fiber orientation in squeeze flow”,J. Rheol.,41, 491.

    Article  Google Scholar 

  50. J.D. Eshelby (1957), “The determination of the elastic field of an ellipsoidal inclusion and related problems”,Proc. Roy. Soc. London,A 241, 376.

    MATH  MathSciNet  Google Scholar 

  51. L.G.R. Filipsson, J.H. Torgny Lagerstedt and F.H., Bark (1977), “A note on the analogous behaviour of turbulent jets of dilute polymer solutions and fibre suspensions”,J. Non-Newtonian Fluid Mech.,3, 97.

    Article  Google Scholar 

  52. G.E. Gadd (1965), “Friction reduction characteristics of fibrous and colloidal substances”,Nature,206, 463.

    Article  Google Scholar 

  53. P.G. de Gennes (1990),Introduction to Polymer Dynamics, Cambridge.

  54. P. Gilormini and P. Vernusse (1992), “Tenseur d'Eshelby et problème d'inclusion dans le cas isotrope transverse incompressible”,C.R. Acad. Sci. Paris,314, 257.

    MATH  Google Scholar 

  55. M. Grmela and P.J. Carreau (1987), “Conformation tensor rheological models”,J. Non-Newtonian Fluid Mech.,23, 271.

    Article  MATH  Google Scholar 

  56. V. Gupta, R. Sureshkumar, B. Khomami and J. Azaiez, “Linear stability of Taylor-Couette flow of semi-dilute non-Brownian fiber suspensions”, submitted toPhys. Fluids.

  57. M.F. Hibberd, M. Kwade and R. Scharf (1982), “Influence of drag reducing additives on the structure of turbulence in a mixing layer”,Rheol. Acta,21, 582.

    Article  Google Scholar 

  58. E.J. Hinch and L.G. Leal (1975), “Constitutive equations in suspension mechanics. Part 1”,J. Fluid. Mech.,71, 481.

    Article  MATH  Google Scholar 

  59. E.J. Hinch and L.G. Leal (1976), “Constitutive equations in suspension mechanics. Part 2: Approximate forms for a suspension of rigid particles affected by Brownian rotations”,J. Fluid Mech.,76, 187.

    Article  MATH  Google Scholar 

  60. E.J. Hinch (1977), “Mechanical models of dilute polymer solutions in strong flow”,Phys. Fluids,20, S22.

    Article  Google Scholar 

  61. J.W. Hoyt (1972), “The effect of additives on fluid friction”,ASME J. Basic Eng.,94D, 258.

    Google Scholar 

  62. G.B. Jeffery (1922), “The motion of ellipsoidal particles immersed in viscous fluid”,Proc. R. Soc.,A102, 161.

    Article  Google Scholar 

  63. D.D. Joseph (1990),Fluid Dynamics of Viscoelastic Liquids, Springer Verlag.

  64. D.D. Kale and A.B. Metzner (1976), “Turbulent drag reduction in dilute fiber suspensions: Mechanistic considerations”,AICHE J.,22, 669.

    Article  Google Scholar 

  65. D.L. Koch (1995), “A model for orientational diffusion in fibre suspensions”,Phys. Fluids,7, 2086.

    Article  MATH  MathSciNet  Google Scholar 

  66. I.M. Krieger and T.J. Dougherty (1959), “A mechanism for non Newtonian flow in suspension of rigid spheres”,Trans. Soc. Rheol.,3, 137.

    Article  Google Scholar 

  67. M.T., Landahl (1973), “Drag reduction by polymer addition”, InProceedings of Thirteenth International Congress of Theoretical and Applied Mechanics, E. Becker and G.K. Mikhailov (Eds.), 177, Springer Verlag.

  68. W.K. Lee, R.C. Vaseleski and A.B. Metzner (1974), “Turbulent drag reduction in polymeric solutions containing suspended fibers”,AICHE J.,20, 128.

    Article  Google Scholar 

  69. F.M. Leslie (1964), “The stability of Couette flow of certain anisotropic fluids”,Proc. Camb. Phil. Soc.,60, 949.

    Article  MathSciNet  Google Scholar 

  70. F.M. Leslie (1966), “Some constitutive equations for anisotropic fluids”,Quart. J. Mech. Appl. Math.,XIX, 357.

    Article  MathSciNet  Google Scholar 

  71. F.M. Leslie (1968), “Some constitutive equations for liquid crystals”,Arch. Rat. Mech. Anal.,28, 265.

    Article  MATH  MathSciNet  Google Scholar 

  72. G.G. Lipscomb (1986),Ph.D. dissertation, University of California, Berkeley.

  73. G.G. Lipscomb, M.M. Denn, D.H. Hur and D.V. Boger (1988), “The flow of fiber suspensions in complex geometries”,J. Non-Newtonian Fluid Mech.,26, 297.

    Article  Google Scholar 

  74. J.L. Lumley (1969), “Drag reduction by additives”,Ann. Rev. Fluid Mech.,1, 367.

    Article  Google Scholar 

  75. W.D. McComb and K.T. Chan (1979), “Drag reduction in fiber suspensions: transitional behaviour due to fibre degradation”,Nature,280, 45.

    Article  Google Scholar 

  76. F. Meslin (1997),Propietés rhéologiques des composites fibres courtes à l'état fondu, PhD Thesis, ENS, Cachan.

    Google Scholar 

  77. F. Meslin, A. Poitou and F. Chinesta (1998), “Identification du comportement rhéologique de suspensions de fibres courtes”,Les Cahiers de Rhéologie,16, 209–216.

    Google Scholar 

  78. F. Meslin, A. Poitou and F. Chinesta (1999), “A new rheometer for molten fiber composites”,15th Polymer Processing Society Conference.

  79. W. Mih and J. Parker (1967), “Velocity profile measurement and a phenomenological description of turbulent fiber suspension pipe flow”,TAPPI,50, 237.

    Google Scholar 

  80. I. Monton (2002),Numerical simulation of hort fiber composites forming processes, PhD Thesis, University of Valencia (Spain).

    Google Scholar 

  81. T. Mura (1982),Micromechanics of Defects in Solids, Martinus Nijhoff.

  82. B. Nsom (1994a), “Transition from circular Couette flow to Taylor vortex flow in dilute and semi-concentrated suspensions of stiff fibers”,J. Phys.,II 4, 9.

    Google Scholar 

  83. B. Nsom (1994b), “Computation of drag reduction in fiber suspensions”,Fluid Dyn. Res.,14, 275.

    Article  Google Scholar 

  84. B. Nsom (1996), “Stability of fiber suspension flow in curved channel”,J. Phys.,II 6, 1483.

    Google Scholar 

  85. T.C. Papanastasiou and A.N. Alexandrou (1987), “Isothermal extrusion of non-dilute fiber suspensions”,J. Non-Newtonian Fluid Mech.,25, 313.

    Article  Google Scholar 

  86. N. Phan-Thien and A.L. Graham (1990), “The squeezing flow of a model suspension fluid”,Rheol. Acta,29, 433.

    Article  Google Scholar 

  87. N. Phan-Thien and A.L. Graham (1991), “A new constitutive model for fibre suspensions: flow past a sphere”,Rheol. Acta,30, 44.

    Article  Google Scholar 

  88. E. Pichelin and T. Coupez (1998), “Finite element solution of the 3D mold filling for viscous incompressible fluid”,Comput. Meth. Appl. Mech. Engng.,163, 359.

    Article  MATH  MathSciNet  Google Scholar 

  89. V.N. Pilipenko, N.M. Kalinichenko and A.S. Lemak (1981), “Stability of the flow of a fibre suspension in the gap between coaxial cylinders”,Sov. Phys. Dokl.,26, 646.

    MATH  Google Scholar 

  90. F.T. Pinho and J.H. Whitelaw (1990), “Flow of non-Newtonian fluids in a pipe”,J. Non-Newtonian Fluid Mech.,34, 129.

    Article  Google Scholar 

  91. R.J. Pirih and W.M. Swanson (1972), “Drag reduction and turbulence modification in rigid particle suspensions”,Can. J. Chem. Eng.,50, 228.

    Google Scholar 

  92. O. Pironneau (1989),Finite methods for fluids, Wiley.

  93. A. Poitou, F. Chinesta and R. Torres (2000), “Numerical simulation of the steady recirculating flows of fiber suspensions”,J. Non-Newtonian Fluid Mech.,90, 65.

    Article  MATH  Google Scholar 

  94. M. Rahnama, D.L. Koch and E.S.G. Shaqfeh (1995), “The effect of hydrodynamic interactions on the orientation distribution in a fibre suspension subject to simple shear flow”,Phys. Fluid,7, 487.

    Article  MATH  Google Scholar 

  95. S. Ranganathan and S.G. Advani (1993), “A simultaneous solution for flow and fiber orientation in axisymmetric diverging radial flow”,J. Non-Newtonian Fluid Mech.,47, 107.

    Article  MATH  Google Scholar 

  96. J. Rosenberg, M.M. Denn and R. Keunings (1990), “Simulation of non-recirculating flows of dilute fiber suspensions”,J. Non-Newtonian Fluid Mech.,37, 317.

    Article  MATH  Google Scholar 

  97. S. Sasaki (1991a), “Drag reduction effect of rod-like polymer solutions: I. Influences of polymer conecentration and rigidity of skeletal back bone”,J. Phys. Soc. Japan,60, 868.

    Article  Google Scholar 

  98. S. Sasaki (1991b), “Drag reduction effect of rod-like polymer solutions: II. Comparison between microgel and linear type polyions”,J. Phys. Soc. Japan,60, 2613.

    Article  Google Scholar 

  99. E.S.G. Shaqfeh and G.H. Frederickson (1990), “The hydrodynamic stress in a suspension of rods”,Phys. Fluids A,2, 7.

    Article  MATH  MathSciNet  Google Scholar 

  100. E.S.G. Shaqfeh (1996), “Fully elastic instabilities in viscometric flows”,Ann. Rev. Fluid Mech.,28, 129.

    MathSciNet  Google Scholar 

  101. R.S. Sharma, V. Seshadri and R.C. Malhotra (1978), “Turbulent drag reduction by injection of fibers”,J. Rheol.,22, 643.

    Article  Google Scholar 

  102. M. Sussman, P. Smereka and S. Osher (1994), “A level set approach to computing solutions to incompressible two-phase flows”,J. Comput. Phys., 114.

  103. W.G. Tiederman (1990), “The effect of dilute polymer solution on viscous drag and turbulent structure”, InStructure of Turbulence and Drag Reduction IUTAM Symp., A. Gyr (Ed.), Springer Verlag.

  104. C.L. Tucker III (1991), “Flow regime for fiber suspensions in narrow gaps”,J. Non-Newt. Fluid. Mech.,39, 239.

    Article  Google Scholar 

  105. R.C. Vaseleski and A.B. Metzner (1974), “Drag reduction in the turbulent flow of fiber suspensions”,AICHE J.,20, 301.

    Article  Google Scholar 

  106. B.E. VerWeyst, C.L. Tucker III, P.H. Foss and J.F. O'Gara (1999), “Fiber orientation in 3-D injection molded features: prediction and experiment”,15th Polymer Processing Society Conference.

  107. P.S. Virk and D.L. Wagger (1990), “Aspects of mechanisms of type B drag reduction” InStructure of Turbulence and Drag Reduction, IUTAM Symp., A. Gyr (Ed.), Springer Verlag.

  108. Y. Yang, J.N. Chung, T.R. Troutt and C.T. Crowe (1990), “The influence of particles on the spatial stability of two-phase mixing layers”,Phys. Fluids,2, 1839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Azaiez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azaiez, J., Chiba, K., Chinesta, F. et al. State-of-the-Art on numerical simulation of fiber-reinforced thermoplastic forming processes. ARCO 9, 141–198 (2002). https://doi.org/10.1007/BF02736650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736650

Keywords

Navigation