Skip to main content
Log in

Differential display identifies genes in chinese hamster ovary cells sensitive to elevated ammonium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ammonium is a toxic waste product that has been reported to negatively inhibit cell growth and recombinant glycosylation in Chinese hamster ovary (CHO) cells; however, the effect of this toxicity on intracellular gene expression has received only limited investigation. We used a differential display method to identify genes in CHO cells that were affected by ammonium stress. Eight genes whose mRNA levels significantly changed in response to elevated ammonium were isolated and identified. Five of the genes were identified as having lower expression under the ammonium stress, whereas three genes were identified as having higher expression. Sequence homology with other mammalian organisms was used to attribute function to these newly identified genes. The identified ammonium-sensitive genes were grouped into three broad functional groups: cellular processes, energy metabolism, and genetic-information processing. The three cellular process-related genes had lower expression (anaphase-promoting complex subunit 5, eukaryotic initiation factor 5A II, KIAA1091 protein). The two energy-related genes had higher expression under ammonium stress (adenosine triphosphate synthase subunit C and mitofusin 1). Both of the genetic information-processing genes (endoplasmic reticulum [ER]-resident protein ERdj5 and structure-specific recognition protein 1) had lower expression under the ammonium stress, whereas the 26S proteasome subunit adenosine triphosphatase 3 gene had higher expression. These preliminary results indicate that ammonium stress lowers expression of genes controlling cell cycle, protein folding, and quality and raises genes that control energy metabolism and degradation. Our findings demonstrate the usefulness of mRNA differential-display techniques for the detection of CHO cell genes affected by ammonium stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkins, N., Parekh, R. B., and James, D. C. (1996),Nat. Biotechnol. 14, 975–981.

    Article  CAS  Google Scholar 

  2. Ozturk, S. S., Riley, M. R., and Palsson, B. O. (1992),Biotechnol. Prog. 6, 121–128.

    Article  Google Scholar 

  3. Glacken, M. W., Fleischaker, R. J., and Sinskey, A. J. (1986),Biotechnol. Bioeng. 28, 1376–1389.

    Article  CAS  Google Scholar 

  4. Miller, W. M., Blanch, H. W., and Wilke, C. R. (1988),Biotechnol. Bioeng. 32, 947–965.

    Article  CAS  Google Scholar 

  5. Chen, P. F. and Harcum, S. W. (2005),J. Biotechnol. 117, 277–286.

    Article  CAS  Google Scholar 

  6. Gawlitzek, M., Papac, D. I., Sliwkowski, M. B., and Ryll, T. (1999),Glycobiology 9, 125–131.

    Article  CAS  Google Scholar 

  7. Schneider, M., El Alaoui, M., von Stockar, U., and Marison, I. W. (1997),Enzyme Microb. Technol. 20, 268–276.

    Article  CAS  Google Scholar 

  8. Yang, M. and Butler, M. (2000),Biotechnol. Bioeng. 68, 370–380.

    Article  CAS  Google Scholar 

  9. Hansen, H. A. and Emborg, C. (1994),Biotechnol. Prog. 10, 121–124.

    Article  CAS  Google Scholar 

  10. Reuveny, S., Velez, D., Macmillan, J. D., and Miller, L. (1986),J. Immunol. Methods 86, 53–59.

    Article  CAS  Google Scholar 

  11. Yang, M. and Butler, M. (2000),Cytotechnology 34, 83–99.

    Article  CAS  Google Scholar 

  12. Yang, M. and Butler, M. (2002),Biotechnol. Prog. 18, 129–138.

    Article  CAS  Google Scholar 

  13. Jenkins, N. (1996),Curr. Opin. Biotechnol. 7, 205–209.

    Article  CAS  Google Scholar 

  14. Boron, W. F. and De Weer, P. (1976),J. Gen. Physiol. 67, 91–112.

    Article  CAS  Google Scholar 

  15. Knepper, M. A., Packer, R., and Good, D. W. (1989),Physiol. Rev. 69, 179–249.

    CAS  Google Scholar 

  16. Kikeri, D., Sun, A., Zeidel, M. L., and Hebert, S. C. (1989),Nature 339, 478–480.

    Article  CAS  Google Scholar 

  17. Liang, P. and Pardee, A. B. (1992),Science 257, 967–971.

    Article  CAS  Google Scholar 

  18. Ko, J. et al. (2003),Oncogene 22, 4679–4689.

    Article  CAS  Google Scholar 

  19. Butowt, R., Granot, D., and Rodriguez-Garcia, M. I. (2003),Plant Cell Physiol. 44, 1152–1161.

    Article  CAS  Google Scholar 

  20. Moore, R. C. et al. (2003),Genetics 163, 321–334.

    CAS  Google Scholar 

  21. Leng, R. P. et al. (2003),Cell 112, 779–791.

    Article  CAS  Google Scholar 

  22. Liang, P. et al. (1994),Nucleic Acids Res. 22, 5763, 5764.

    Article  CAS  Google Scholar 

  23. Molhoj, M., Johansen, B., Ulvskov, P., and Borkhardt, B. (2001),Plant Mol. Biol. 45, 93–105.

    Article  CAS  Google Scholar 

  24. Altschul, S. F. et al. (1997),Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  Google Scholar 

  25. Lang, P., Zhang, C.-K., Ebel, R. C., Dane, F., and Dozier, W. A. (2005),Gene 359, 111–118.

    Article  CAS  Google Scholar 

  26. Kanehisa, M. (1997),Trends Genet. 13, 375, 376.

    Article  CAS  Google Scholar 

  27. Kanehisa, M. and Goto, S. (2000),Nucleic Acids Res. 28, 27–30.

    Article  CAS  Google Scholar 

  28. Autieri, M. V. (2001),Biochem. Biophys. Res. Commun. 282, 723–728.

    Article  CAS  Google Scholar 

  29. Jenkins, Z. A., Haag, P. G., and Johansson, H. E. (2001),Genomics 71, 101–109.

    Article  CAS  Google Scholar 

  30. Park, M. H., Wolff, E. C., and Folk, J. E. (1993),Trends Biochem. Sci. 18, 475–479.

    Article  CAS  Google Scholar 

  31. Nakayama, M., Kikuno, R., and Ohara, O. (2002),Genome Res. 12, 1773–1784.

    Article  CAS  Google Scholar 

  32. Schneider, M., Marison, I. W., and von Stockar, U. (1996),J. Biotechnol. 46, 161–185.

    Article  CAS  Google Scholar 

  33. Martinelle, K. and Haggstrom, L. (1993),J. Biotechnol. 30, 339–350.

    Article  CAS  Google Scholar 

  34. Glacken, M. W. (1988),Bio/Technology 6, 1041–1050.

    Article  CAS  Google Scholar 

  35. Tipton, K. F. and Couee, I. (1988), inGlutamine and Glutamate in Mammals, vol. 1, Kvamme, E., ed., CRC Press, Boca Raton, FL.

    Google Scholar 

  36. Glacken, M. W., Adema, E., and Sinskey, A. J. (1988), „Mathematical Descriptions of Hybridoma Culture Kinetics II. The Relationship between Thiol Chemistry and the Degradation of Serum Activity„ (Rice University, 1988).

  37. Zhou, W. C., Chen, C. C., Buckland, B., and Aunins, J. (1997),55, 783–792.

  38. Santel, A. et al. (2003),J. Cell Sci. 116, 2763–2774.

    Article  CAS  Google Scholar 

  39. Fritz, S., Rapaport, D., Klanner, E., Neupert, W., and Westermann, B. (2001),J. Cell Biol. 152, 683–692.

    Article  CAS  Google Scholar 

  40. Rapaport, D., Brunner, M., Neupert, W., and Westermann, B. (1998),J. Biol. Chem. 273, 20,150–20,155.

    CAS  Google Scholar 

  41. Rojo, M., Legros, F., Chateau, D., and Lombes, A. (2002),J. Cell Sci. 115, 1663–1674.

    CAS  Google Scholar 

  42. Andersen, D. C. and Goochee, C. F. (1995),Biotechnol. Bioeng. 47, 96–105.

    Article  CAS  Google Scholar 

  43. Cunnea, P. M. et al. (2003),J. Biol. Chem. 278, 1059–1066.

    Article  CAS  Google Scholar 

  44. Hosoda, A., Kimata, Y., Tsuru, A., and Kohno, K. (2003),J. Biol. Chem. 278, 2669–2676.

    Article  CAS  Google Scholar 

  45. Nagulapalli, S., Pongubala, J. M. R., and Atchison, M. L. (1995),J. Immunol. 155, 4330–4338.

    CAS  Google Scholar 

  46. Spencer, J. A., Baron, M. H., and Olson, E. N. (1999),J. Biol. Chem. 274, 15,686–15,693.

    CAS  Google Scholar 

  47. Cao, S. et al. (2003),Mol. Cell. Biol. 23, 5301–5307.

    Article  CAS  Google Scholar 

  48. Carlone, D. L. and Skalnik, D. G. (2001),Mol. Cell. Biol. 21, 7601–7606.

    Article  CAS  Google Scholar 

  49. Herceg, Z. et al. (2001),Nat. Genet. 29, 206–211.

    Article  CAS  Google Scholar 

  50. Tanaka, K. (1995),Mol. Biol. Rep. 21, 21–26.

    Article  CAS  Google Scholar 

  51. Gottesman, S. (2003),Annu. Rev. Cell Dev. Biol. 19, 565–587.

    Article  CAS  Google Scholar 

  52. Xiong, X. M., Chong, E., and Skach, W. R. (1999),J. Biol. Chem. 274, 2616–2624.

    Article  CAS  Google Scholar 

  53. Kopito, R. R. (1997),Cell 88, 427–430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah W. Harcum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Harcum, S.W. Differential display identifies genes in chinese hamster ovary cells sensitive to elevated ammonium. Appl Biochem Biotechnol 141, 349–359 (2007). https://doi.org/10.1007/BF02729072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729072

Index Entries

Navigation