Skip to main content
Log in

Genetic analysis of heterogeneous sub-clones in recombinant Chinese hamster ovary cells

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chinese hamster ovary (CHO) cells have been widely used for production of recombinant proteins and therapeutic antibodies. However, owing to the instability and heterogeneity of CHO cells, the development of stable and high-expression recombinant CHO cell lines is often time-consuming. To investigate the mechanisms associated with heterogeneity in protein productivity, we performed transcriptome analysis on the subclones derived from a stable parental CHO clone. Two high-expression subclones and one low-expression subclone were selected based on their similar genomic background and subjected to RNA-seq analysis. Over 100 differentially expressed genes were identified between the subclones with high and low productivity. The molecular functions of the differentially expressed genes were enriched for translational elongation, sterol biosynthetic process, and regulation of secretion. In addition, analyses of the two subclones with high protein expression levels identified over 300 differentially expressed genes involved in DNA metabolic processes, cellular macromolecule catabolic processes, cell cycle, protein catabolic processes, and RNA processing and transcription. A subset of the differentially expressed genes was overexpressed in CHO cells to identify their effects on protein production. Together, these results indicate that transcriptome variation can cause significant inter-cellular heterogeneity in CHO cells and a better understanding of the molecular mechanism underlying heterogeneity might help to improve the production of recombinant proteins by CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailey LA, Hatton D, Field R, Dickson AJ (2012) Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng 109(8):2093–2103

    Article  CAS  PubMed  Google Scholar 

  • Bain JM, Cho MT, Telegrafi A, Wilson A, Brooks S, Botti C, Gowans G, Autullo LA, Krishnamurthy V, Willing MC, Toler TL, Ben-Zev B, Elpeleg O, Shen Y, Retterer K, Monaghan KG, Chung WK (2016) Variants in HNRNPH2 on the X chromosome are associated with a neurodevelopmental disorder in females. Am J Hum Genet 99(3):728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann TF, Kramer O, Klausing S, Heinrich C, Thute T, Buntemeyer H, Hoffrogge R, Noll T (2012) Effects of high passage cultivation on CHO cells: a global analysis. Appl Microbiol Biotechnol 94(3):659–671

    Article  CAS  PubMed  Google Scholar 

  • Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96(4):885–894

    Article  CAS  PubMed  Google Scholar 

  • Chida Y, Takagi K, Terada S (2013) Establishment of a mammalian cell line suitable for industrial production of recombinant protein using mutations induced by high-energy beam radiation. Cytotechnology 65(6):955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SL, Lovelady CS, Grainger RK, Racher AJ, Young RJ, James DC (2013) Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng 110(1):260–274

    Article  CAS  PubMed  Google Scholar 

  • Dorai H, Corisdeo S, Ellis D, Kinney C, Chomo M, Hawley-Nelson P, Moore G, Betenbaugh MJ, Ganguly S (2012) Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol Bioeng 109(4):1016–1030

    Article  CAS  PubMed  Google Scholar 

  • Feichtinger J, Hernandez I, Fischer C, Hanscho M, Auer N, Hackl M, Jadhav V, Baumann M, Krempl PM, Schmidl C, Farlik M, Schuster M, Merkel A, Sommer A, Heath S, Rico D, Bock C, Thallinger GG, Borth N (2016) Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol Bioeng 113(10):2241–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fomina-Yadlin D, Mujacic M, Maggiora K, Quesnell G, Saleem R, McGrew JT (2015) Transcriptome analysis of a CHO cell line expressing a recombinant therapeutic protein treated with inducers of protein expression. J Biotechnol 212:106–115

    Article  CAS  PubMed  Google Scholar 

  • Hammond S, Lee KH (2012) RNA interference of cofilin in Chinese hamster ovary cells improves recombinant protein productivity. Biotechnol Bioeng 109(2):528–535

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Jackson RA, Wu JS, Chen ES (2016) C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Div 11:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR (2015) Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 16:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Kantardjieff A, Jacob NM, Yee JC, Epstein E, Kok YJ, Philp R, Betenbaugh M, Hu WS (2010) Transcriptome and proteome analysis of Chinese hamster ovary cells under low temperature and butyrate treatment. J Biotechnol 145(2):143–159

    Article  CAS  PubMed  Google Scholar 

  • Kaufman R, Sharp PA, Latt SA (1983) Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cellular Bio 3:699–711

    Article  CAS  Google Scholar 

  • Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141(1):219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenney SP, Meng XJ (2015) Identification and fine mapping of nuclear and nucleolar localization signals within the human ribosomal protein S17. PLoS One 10(4):e0124396

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93(3):917–930

    Article  CAS  PubMed  Google Scholar 

  • Kim M, O'Callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 108(10):2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Kim NS, Byun TH, Lee GM (2001) Key determinants in the occurrence of clonal variation in humanized antibody expression of CHO cells during dihydrofolate reductase mediated gene amplification. Biotechnol Prog 17(1):69–75

    Article  PubMed  Google Scholar 

  • Kim SJ, Lee GM (1999) Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 64(6):741–749

    Article  CAS  PubMed  Google Scholar 

  • Lahouassa H, Blondot ML, Chauveau L, Chougui G, Morel M, Leduc M, Guillonneau F, Ramirez BC, Schwartz O, Margottin-Goguet F (2016) HIV-1 Vpr degrades the HLTF DNA translocase in T cells and macrophages. Proc Natl Acad Sci U S A 113(19):5311–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Tsutsui T, Honda K, Asano R, Kumagai I, Ohtake H, Omasa T (2013) Generation of high-producing cell lines by overexpression of cell division cycle 25 homolog a in Chinese hamster ovary cells. J Biosci Bioeng 116(6):754–760

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xie K, Ding G, Li J, Chen K, Li H, Qian J, Jiang C, Fang J (2014) Tumor resistance to anti-VEGF therapy through up-regulation of VEGF-C expression. Cancer Lett 346(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen K, Wang Z, Li D, Lin J, Yu C, Yu F, Wang X, Huang L, Jiang C, Gu H, Fang J (2016) Genetic analysis of the clonal stability of Chinese hamster ovary cells for recombinant protein production. Mol BioSyst 12(1):102–109

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimiya D, Ogura Y, Sakurai H, Takahashi T (2012) Identification of antibody-interacting proteins that contribute to the production of recombinant antibody in mammalian cells. Appl Microbiol Biotechnol 96(4):971–979

    Article  CAS  PubMed  Google Scholar 

  • Nishimiya D, Mano T, Miyadai K, Yoshida H, Takahashi T (2013) Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells. Appl Microbiol Biotechnol 97(6):2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Nunberg JH, Kaufman RJ, Schimke RT, Urlaub G, Chasin LA (1978) Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc Natl Acad Sci U S A 75(11):5553–5556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberbek A, Matasci M, Hacker DL, Wurm FM (2011) Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng 108(3):600–610

    Article  CAS  PubMed  Google Scholar 

  • Omasa T, Takami T, Ohya T, Kiyama E, Hayashi T, Nishii H, Miki H, Kobayashi K, Honda K, Ohtake H (2008) Overexpression of GADD34 enhances production of recombinant human antithrombin III in Chinese hamster ovary cells. J Biosci Bioeng 106(6):568–573

    Article  CAS  PubMed  Google Scholar 

  • Pilbrough W, Munro TP, Gray P (2009) Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 4(12):e8432

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer S, Gugliotta A, Koenitzer J, Hauser H, Wirth D (2015) Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 195:15–29

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MT, Chen YJ, Chen CY, Tsai MH, Han CL, Chen YJ, Mersmann HJ, Ding ST (2017) Identification of potential plasma biomarkers for nonalcoholic fatty liver disease by integrating transcriptomics and proteomics in laying hens. J Nutr 147(3):293–303

    CAS  PubMed  Google Scholar 

  • Vishwanathan N, Le H, Jacob NM, Tsao Y-S, Ng S-W, Loo B, Liu Z, Kantardjieff A, Hu W-S (2014) Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Biotechnol Bioeng 111(3):518–528

    Article  CAS  PubMed  Google Scholar 

  • Worton RG, Ho CC, Duff C (1977) Chromosome stability in CHO cells. Somatic Cell Genet 3(1):27–45

    Article  CAS  PubMed  Google Scholar 

  • Wurm FM, Pallavicini MG, Arathoon R (1992) Integration and stability of CHO amplicons containing plasmid sequences. Dev Biol Stand 76:69–82

    CAS  PubMed  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamano N, Takahashi M, Haghparast SMA, Onitsuka M, Kumamoto T, Frank J, Omasa T (2016) Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells. J Biosci Bioeng 122(2):226–231

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Nakanishi F, Itami S, Kameoka D, Omasa T, Katakura Y, Kishimoto M, K-i S (1999) Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes. Cytotechnology 33:37–46

    Article  Google Scholar 

  • Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga K (2000) Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol Prog 16(5):710–715

    Article  CAS  PubMed  Google Scholar 

  • You L, Xie R, Hu H, Gu G, Zheng H, Zhang J, Yang X, He X, Cui W (2017) High levels of serum β2-microglobulin predict severity of coronary artery disease. BMC Cardiovasc Disord 17(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Qiao C, Chang L, Guo Y, Fan Y, Villacorta L, Chen YE, Zhang J (2016) Cardiomyocyte overexpression of FABP4 aggravates pressure overload-induced heart hypertrophy. PLoS One 11(6):e0157372

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Cheng L, He Y, Gu Y, Wang Y, Wang C (2016) Association of gene polymorphisms of FV, FII, MTHFR, SERPINE1, CTLA4, IL10, and TNFalpha with pre-eclampsia in Chinese women. Inflamm Res 65(9):717–724

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Natural Science Foundation of China (31270987, 31470896, 81402399), National Basic Research Program of China (973 Program) 2015CB553706 and Suzhou Applicational Basic Project, China (SYG201509). We would like to thank Editage [www.editage.cn] for the English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Fang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they do not have conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Li, D., Li, H. et al. Genetic analysis of heterogeneous sub-clones in recombinant Chinese hamster ovary cells. Appl Microbiol Biotechnol 101, 5785–5797 (2017). https://doi.org/10.1007/s00253-017-8331-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8331-4

Keywords

Navigation