Skip to main content
Log in

Mechanism of autoxidation of oxyhaemoglobin

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Oxyhaemoglobins from erythrocytes of different animals including fish, amphibians, reptiles, birds, mammals and human beings have been isolated by ion-exchange chromatography over phosphocellulose and the comparative rates of autoxidation of oxyhaemoglobin studied. The mechanism of autoxidationin vitro has been elucidated using toad as well as human oxyhaemoglobin. Autoxidation is markedly inhibited by carbon monoxide as well as by anion ligands, namely, potassium cyanide, sodium azide and potassium thiocyanate. The inhibition by anions is in the same order as their strength as nucleophiles, indicating that it is the oxyhaemoglobin and not the ligand-bound deoxy species which undergoes autoxidation. The structure of oxyhaemoglobin is considered to be mainly \(Hb^{3 + } O_2^{ - \cdot } \) and determination of the rate of autoxidation with or without using superoxide dismutase and catalase indicates that the initial process of autoxidation takes place by dissociation of \(Hb^{3 + } O_2^{ - \cdot } \) to methaemoglobin and superoxide to the extent of 24%. The superoxide thus produced reattacks oxyhaemoglobin to produce further methaemoglobin and hydrogen peroxide. H2O2 is a major oxidant of oxyhaemoglobin producing methaemoglobin to the extent of 53%. A tentative mechanism of autoxidation showing the sequence of reactions involving superoxide, H2O2 and OH has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beauchamp C and Fridovich I 1971 Superoxide dismutase: Improved assay and an assay applicable to acrylamide gel;Anal. Biochem. 44 276–287

    Article  PubMed  CAS  Google Scholar 

  • Brown W D 1961 Chromatography of myoglobin on diethylaminoethyl cellulose columns;J. Biol. Chem. 236 2238–2240

    CAS  Google Scholar 

  • Brunori M, Falcioni G, Fioretti E, Giardina B and Rotilio G 1975 Formation of superoxide in the autoxidation of the isolated α and Β chains of human hemoglobin and its involvement of hemichrome precipitation;Eur. J. Biochem. 53 99–104

    Article  CAS  Google Scholar 

  • Cederbaum A I, Dicker E, Rubin E and Cohen G 1979 Effect of thiourea on microsomal oxidation of alcohols and associated microsomal functions;Biochemistry 18 1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Demma L S and Salhany J M 1977 Direct generation of superoxide anions by flash photolysis of human oxyhemoglobin;J. Biol. Chem. 252 1226–1231

    PubMed  CAS  Google Scholar 

  • Fridovich I 1972 Superoxide radical and superoxide dismutase;Acc. Chem. Res. 5 321–326

    Article  CAS  Google Scholar 

  • Fridovich I 1979 Superoxide dismutases: defence against endogenous superoxide radical; inOxygen free radicals and tissue damage, Ciba Foundation Symposium 65 (New Series) (Amsterdam: Excerpta Medica) pp 77–93

    Google Scholar 

  • Goodman M, Moore W and Matsuda G 1975 Darwinian evolution in the genealogy of hemoglobin;Nature (London) 253 603–608

    Article  CAS  Google Scholar 

  • Gotoh T and Shikama K 1976 Generation of the superoxide radical during autoxidation of oxymyoglobin;J. Biochem. (Tokyo) 80 397–399

    CAS  Google Scholar 

  • Jaffe E R and Neumann G 1964 A comparison of the effect of menadione, methylene blue and ascorbic acid on the reduction of methaemoglobinin vivo;Nature (London) 202 607–608

    Article  CAS  Google Scholar 

  • Kellog E W III and Fridovich I 1977 Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide;J. Biol. Chem. 252 6721–6728

    Google Scholar 

  • Laemmli U K 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4;Nature (London) 227 680–685

    Article  CAS  Google Scholar 

  • Lynch R E, Lee G R and Cartwright G E 1976 Inhibition by superoxide dismutase of methemoglobin formation from oxyhemoglobin;J. Biol. Chem. 251 1015–1019

    PubMed  CAS  Google Scholar 

  • Lynch R E, Thomas J E and Lee G R 1977 Inhibition of methemoglobin formation from purified oxyhemoglobin by superoxide dismutase;Biochemistry 16 4563–4567

    Article  PubMed  CAS  Google Scholar 

  • Mal A, Nandi A and Chatterjee I B 1991 Haemoglobin: A scavenger of superoxide radical;J. Biosci. 16 43–53

    CAS  Google Scholar 

  • McCord J M, Crapo J D and Fridovich I 1977 Superoxide dismutase assays: A review of methodology; inSuperoxide and superoxide dismutase (ed) A M Michelson, J M McCord and I Fridovich (New York: Academic Press) pp 11–17

    Google Scholar 

  • Misra H P and Fridovich I 1972 The generation of superoxide radical during the autoxidation of hemoglobin;J. Biol. Chem. 247 6960–6962

    PubMed  CAS  Google Scholar 

  • Nandi A and Chatterjee I B 1987 Scavenging of superoxide radical by ascorbic acid;J. Biosci. 11 435–441

    CAS  Google Scholar 

  • O’Connell M, Halliwell B, Moorhouse C P, Aruoma O I, Baum H and Peters T J 1986 Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism?;Biochem. J. 234 727–731

    PubMed  CAS  Google Scholar 

  • Peisach J 1975 An interim report on electronic control of oxygenation of heme proteins;Ann. N. Y. Acad. Sci. 244 187–202

    Article  PubMed  CAS  Google Scholar 

  • Peisach J, Blumberg W E, Wittenberg B A and Wittenberg J B 1968 The electronic structure of protoheme proteins: Configuration of the heme and its ligands;J. Biol. Chem. 243 1871–1880

    PubMed  CAS  Google Scholar 

  • Perutz M F 1979 Regulation of oxygen affinity of hemoglobin: Influence of the structure of the globin on the heme iron;Annu. Rev. Biochem. 48 327–386

    Article  PubMed  CAS  Google Scholar 

  • Puppo A and Halliwell B 1988 Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron;Biochem. J. 249 185–190

    PubMed  CAS  Google Scholar 

  • Richteric R 1969 Haemoglobin as cyanmethaemoglobin; inClinical chemistry (Switzerland, Basel: S Karger) pp 333–335

    Google Scholar 

  • Riggs A 1981 Preparation of blood haemoglobins of vertebrates;Methods Enzymol. 76 5–13

    PubMed  CAS  Google Scholar 

  • Romero-Herrera A E, Lehmann H, Joysey K A and Friday A E 1973 Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis;Nature (London) 246 389–395

    Article  CAS  Google Scholar 

  • Sadrzadeh S M H, Graf E, Panter S S, Hallaway P E and Eaton J W 1984 Hemoglobin: A biological fenton reagent;J. Biol. Chem. 259 14354–14356

    PubMed  CAS  Google Scholar 

  • Salvati A M, Ambrogioni M T and Tentori L 1969 The autoxidation of hemoglobin, effect of copper;Ital. J. Biochem. 18 1–18

    PubMed  CAS  Google Scholar 

  • Salvati A M and Tentori L 1981 Determination of aberrant haemoglobin derivatives in human blood;Methods Enzymol. 76 715–731

    PubMed  CAS  Google Scholar 

  • Satoh Y and Shikama K 1981 Autoxidation of oxymyoglobin: A nucleophilic displacement mechanism;J. Biol. Chem. 256 10272–10275

    PubMed  CAS  Google Scholar 

  • Scarpa M, Rigo A, Momo F, Isacchi G, Novelli G and Dallapiccola B 1985 Increased rate of superoxide ion generation in Fanconi anemia erythrocytes;Biochem. Biophys. Res. Commun. 130 127–132

    Article  PubMed  CAS  Google Scholar 

  • Scarpa M, Viglino P, Contri D and Rigo A 1984 Generation of superoxide ion in human red blood cell lysates;J. Biol. Chem. 259 10657–10659

    PubMed  CAS  Google Scholar 

  • Sutton H C, Robert P B and Winterbourn C C 1976 The rate of reaction of superoxide radical ion with oxyhaemoglobin and methaemoglobin;Biochem. J. 155 503–510

    PubMed  CAS  Google Scholar 

  • Tomoda A, Tsuji A and Yoneyama Y 1980 Mechanism of hemoglobin oxidation by ferricytochrome C under aerobic and anaerobic conditions;J. Biol. Chem. 255 7978–7985

    PubMed  CAS  Google Scholar 

  • Viale R O, Maggiora G M and Ingraham L L 1964 Molecular orbital evidence for Weiss’s oxyhaemoglobin structure;Nature (London) 203 183–184

    Article  CAS  Google Scholar 

  • Wallace W J and Caughey W S 1979 inBiochemical and clinical aspects of oxygen (ed.) W S Caughey (New York: Academic Press) pp 69–86

    Google Scholar 

  • Wallace W J, Houtchens R A, Maxwell J C and Caughey W S 1982 Mechanism of autoxidation for hemoglobins and myoglobins: Promotion of superoxide production by protons and anions;J. Biol. Chem. 257 4966–4977

    PubMed  CAS  Google Scholar 

  • Wallace W J, Maxwell J C and Caughey W S 1974a The mechanisms of hemoglobin autoxidation: Evidence for proton-assisted nucleophilic displacement of superoxide by anions;Biochem. Biophys. Res. Commun. 57 1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Wallace W J, Maxwell J C and Caughey W S 1974b A role for chloride in the autoxidation of hemoglobin under conditions similar to those in erythrocytes;FEBSLett. 43 33–36

    Article  CAS  Google Scholar 

  • Wasil M, Halliwell B, Grootveld M, Moorhouse C P, Houtchison DCS and Baum H 1987 The specificity of thiourea, dimethylthiourea and dimethylsulphoxide as scavengers of hydroxyl radicals;Biochem. J. 243 867–870

    PubMed  CAS  Google Scholar 

  • Watkins J A, Kawanishi S and Caughey W S 1985 Autoxidation reactions of hemoglobin A free from other red cell components: A minimal mechanism;Biochem. Biophys. Res. Commun. 132 742–748

    Article  PubMed  CAS  Google Scholar 

  • Weiss S S 1964 Nature of the iron-oxygen bond in oxyhaemoglobin;Nature (London) 202 83–84

    Article  CAS  Google Scholar 

  • Wever R, Oudega B and Vangelder B F 1973 Generation of superoxide radicals during the autoxidation of mammalian oxyhemoglobin;Biochim. Biophys. Acta 302 475–478

    CAS  Google Scholar 

  • Winterbourn C C, McGrath B M and Carrell R W 1976 Reactions involving superoxide and normal and unstable haemoglobins;Biochem. J. 155 493–502

    PubMed  CAS  Google Scholar 

  • Winterbourn C C, Williamson O, Vissers M C M and Carrel R W 1981 Unstable haemoglobin haemolytic crises: Contribution of pyrexia haemoglobins;Br. J. Haematol. 49 111–116

    PubMed  CAS  Google Scholar 

  • Wittenberg J B, Wittenberg B A, Peisach J and Blumberg W E 1970 On the state of the iron and the nature of the ligand in oxyhemoglobin and neutrophil oxidant;Proc. Natl. Acad. Sci. USA 67 1846–1853

    Article  PubMed  CAS  Google Scholar 

  • Wu Csc, Duffy P and Brown W D 1972 Interaction of myoglobin and cytochrome c;J. Biol. Chem. 247 1899–1903

    Google Scholar 

  • Yamamoto T, Palmer G, Gill D, Salmeen I T and Rimai L 1973 The valence and the spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy;J. Biol. Chem. 248 5211–5213

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mal, A., Chatterjee, I.B. Mechanism of autoxidation of oxyhaemoglobin. J Biosci 16, 55–70 (1991). https://doi.org/10.1007/BF02720051

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02720051

Keywords

Navigation