Skip to main content
Log in

Hypoosmotic hemolysis of erythrocytes by active carbonyl forms

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Low-molecular-weight dicarbonyls formed during free radical peroxidation of polyene lipids (malondialdehyde) and autooxidation (glyoxal) or other oxidative transformations of glucose (methylglyoxal) are able to modify the structure of lipid-protein supramolecular complexes of cells. We investigated changes in the erythrocyte membrane structure after an 18-h exposure of human red blood cells in the presence of various natural dicarbonyls. The changes in the mechanical properties of the membrane after membrane modification by carbonyls were evaluated by the susceptibility of erythrocytes to hypoosmotic hemolysis. It has been shown that treatment of red blood cells with malondialdehyde increases the resistance of these cells to hypoosmotic hemolysis, whereas the malondialdehyde isomer, methylglyoxal, in contrast, makes red blood cells more sensitive to the action of hypoosmotic solutions. Paradoxically, a homologue of malondialdehyde, glyoxal, has no effect on hemolysis of red blood cells in hypoosmotic solutions. The findings point to the possibility of the multidirectional effect of low-molecular-weight dicarbonyls with similar structures on the structure and function of biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Z. Lankin, A. K. Tikhaze, V. I. Kapel’ko, et al., Biochemistry (Moscow) 72 (10), 1081 (2007).

    Article  Google Scholar 

  2. V. Z. Lankin, A. K. Tikhaze, G. G. Konovalova, et al., in Handbook of Lipoprotein Research, Ed. by J. E. Rathbound (NOVA Sci., New York, 2010), pp. 85–107.

    Google Scholar 

  3. V. Z. Lankin and A. K. Tikhaze, in Free radicals, nitricoxide, and inflammation: molecular, biochemical, and clinical aspects, Ed. by A. Tomasi, T. Özben, and V. P. Skulachev (IOS Press, NATO Science Series, Amsterdam etc., 2003), Vol. 344, pp. 218–231.

    Google Scholar 

  4. V. Z. Lankin, G. G. Konovalova, A. K. Tikhaze, et al., J. Diabetes 8 (3), 398 (2016).

    Article  Google Scholar 

  5. E. M. Kumskova, O. A. Antonova, S. A. Balashov, et al., Mol. Cell. Biochem. 396 (1–2), 79 (2014)

    Article  Google Scholar 

  6. E. Beutler, W. Kuhl, and C. West, Blood 59 (6), 1141 (1982).

    Google Scholar 

  7. D. W. Allen, C. F. Burgoyne, J. D. Groat, et al., Blood, 64 (6),1263 (1984).

    Google Scholar 

  8. T. N. Subbotina, N. M. Titova, A. A. Savchenko, et al., Klin. Lab. Diagn. 20 (5), 33 (2004).

    Google Scholar 

  9. M. Allegra, C. Gentile, L. Tesoriere, and M. A. Livrea, J. Pineal Res. 32 (3), 187 (2002).

    Article  Google Scholar 

  10. A. L. Tappel, in Free Radicals in Biology, Ed. by W. A. Pryor (Acadenic Press, New York, 1980), Vol. 4, pp. 1–47.

    Book  Google Scholar 

  11. V. Z. Lankin, in Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects, Ed. by A. Tomasi, T. Ozben, and V. P. Skulachev (IOS Press, NATO Science Series, Amsterdam, 2003), Vol. 344, pp. 8–23.

    Google Scholar 

  12. T. Schewe, C. M. Rapoport, and H. Kuhn, Adv. Enzymol. Relat. Areas Mol. Biol. 58, 192 (1986).

    Google Scholar 

  13. V. Z. Lankin, Yu. G. Osis, and A. K. Tikhaze, Dokl. Biochem. Biophys. 351, 121 (1996).

    Google Scholar 

  14. V. Z. Lankin, Yu. G. Osis, and A. K. Tikhaze, Biochemistry (Moscow) 67 (5), 566 (2002).

    Article  Google Scholar 

  15. A. B. Manodori and F. A. Kuypers, J. Lab. Clin. Med. 140 (3), 161 (2002).

    Article  Google Scholar 

  16. J. P. Nicolay, J. Schneider, O. M. Niemoeller, et al., Cell. Physiol. Biochem. 18 (4–5), 223 (2006).

    Article  Google Scholar 

  17. G. Caimi, A. Serra, A. Catania, et al., Microcirc. Endothelium Lymphatics. 6 (2–3), 149 (1990).

    Google Scholar 

  18. S. K. Jain, M. Palmer, and Y. Chen, Metabolism 48 (8), 957 (1999).

    Article  Google Scholar 

  19. F. A. Kuypers and K. de Jong, Cell. Mol. Biol. 50 (2), 147 (2004).

    Google Scholar 

  20. M. J. Wilson, K. Richter-Lowney, and D. L. Daleke, Biochemistry 32 (42), 11302 (1993).

    Article  Google Scholar 

  21. V. A. Fadok, D. L. Bratton, D. M. Rose, et al., Nature 405 (6782), 85 (2000).

    Article  ADS  Google Scholar 

  22. P. M. Henson, D. L. Bratton, and V. A. Fadok, Nat. Rev. Mol. Cell. Biol. 2 (8), 627 (2001).

    Article  Google Scholar 

  23. U. K. Messmer and J. Pfeilschifter, Bioessays 22 (10), 878 (2000).

    Article  Google Scholar 

  24. F. E. Boas, L. Forman, and E. Beutler, Proc. Natl. Acad. Sci. U. S. A. 95 (6), 3077 (1998).

    Article  ADS  Google Scholar 

  25. S. Eda and I. W. Sherman, Cell. Physiol. Biochem. 12 (5–6), 373 (2002).

    Article  Google Scholar 

  26. A. Ravandi, A. Kuksis, and N. A. Shaikh, Arterioscler. Thrombos. Vascular Biol. 20 (2), 467 (2000).

    Article  Google Scholar 

  27. V. Z. Lankin, O. I. Afanasieva, G. G. Konovalova, et al., Dokl. Biochem. Biophys. 441, 287 (2011).

    Article  Google Scholar 

  28. T. J. Lyons and A. J. Jenkins, Curr. Opin. Lipidol. 8 (3), 174 (1997).

    Article  Google Scholar 

  29. A. Gugliucci, T. Menini, and A. J. Stahl, Biochem. Mol. Biol. Int. 32 (1), 139 (1994).

    Google Scholar 

  30. V. Lankin, G. Konovalova, A. Tikhaze, et al., Mol. Cell. Biochem. 395 (1–2), 241 (2014).

    Article  Google Scholar 

  31. J. V. Hunt, M. A. Bottoms, K. Clare, et al., Biochem J. 300 (1), 243 (1994).

    Article  Google Scholar 

  32. V. Z. Lankin, A. K. Tikhaze, and E. M. Kumskova, Mol. Cell. Biochem. 365 (1–2), 93 (2012)

    Article  Google Scholar 

  33. K. B. Shumaev, K. V. Gubkina, E. M. Kumskova, et al., Biochemistry (Moscow) 74 (4), 461 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Z. Lankin.

Additional information

Original Russian Text © V.Z. Lankin, E.M. Belova, A.K. Tikhaze, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 325–329.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lankin, V.Z., Belova, E.M. & Tikhaze, A.K. Hypoosmotic hemolysis of erythrocytes by active carbonyl forms. BIOPHYSICS 62, 252–255 (2017). https://doi.org/10.1134/S0006350917020130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917020130

Keywords

Navigation