Skip to main content
Log in

Temporal behavior of manganese and iron in a sandy coastal sediment exposed to water column anoxia

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The influence of bottom water anoxia on manganese (Mn), iron (Fe), and sulfur (S) biogeochemistry was examined in defaunated sandy sediment from Kærby Fed, Denmark, under controlled laboratory incubations. The initial narrow peaks and steep gradients in solid Mn(IV) and Fe(III) as well as porewater Mn2+ and Fe2+ observed in the upper 2–5 cm of the sediment indicate rapid metal reduction-oxidation cycles under oxic conditions in the overlying water. The fe zones were generally displaced about 0.5 cm downward compared with the Mn zones due to differences in reactivity. Mn(IV) was reduced and gradually disappeared first (within 10 d) when the sediment was exposed to anoxia followed by reduction and disappearance of Fe(III) (day 7 to 18). The associated loss of Mn2+ to the overlying water was most rapid during the first 15 d, whereas the Fe2+ efflux initiated around day 10, and after a few days with modest rates the efflux peaked around day 20. A considerable portion of the total Mn (26%) and Fe (23%) inventory initially present in the sediment was lost by efflux after about 1 mo of anoxia. The ability of the sediment to retain upward diffusion of H2S gradually disappeared in a temporal pattern closely related to the changes in pool size of the reactive Mn and Fe present. The total metal pool in Kærby Fed sediment prevented H2S release to the overlying water for at least a month of anoxia. It is speculated that external supplies from the overlying water allows a rapid refuelling of surface Mn and Fe oxides in the field when oxic conditions returns between periods of anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aller, R. C. 1994. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balance.Journal of Marine Research 52:259–295.

    Article  CAS  Google Scholar 

  • Aller, R. C., J. E. Mackin, andR. T. Cox 1986. Diagenesis of Fe and S in Amazon inner shelf muds: Apparent dominance of Fe reduction and implications for the genesis of ironstones.Continental Shelf Research 6:263–289.

    Article  CAS  Google Scholar 

  • Andersen, F. Ø. andE. Kristensen. 1988. The influence of macrofauna on estuarine benthic community metabolism—A microcosm study.Marine Biology 99:591–603.

    Article  CAS  Google Scholar 

  • Balzer, W. 1982. On the distribution of iron and manganese at the sediment/water interface: Thermodynamic, versus kinetic control.Geochimica et Cosmochimica Acta 46:1153–1161.

    Article  CAS  Google Scholar 

  • Berner, R. A. 1981. Authigenic mineral formation resulting from organic matter decomposition in modern sediments.Fortschritte der Mineralogie 59:117–135.

    CAS  Google Scholar 

  • Binnerup, S. J., K. Jensen, N. P. Revsbech, M. H. Jensen, andJ. Sørensen. 1992. Derntrification, dissimilatory reduction of nitrate to ammonium and nitrification in a bioturbated estuarine seliment as measured with15N and microsensor techniques.Applied and Environmental Microbiology 58:303–313.

    CAS  Google Scholar 

  • Boughriet, A., R. S. Figueiredo, J. Laureyns, andP. Recourt. 1997. Identification of newly generated iron phases in recent anoxic sediments:57Fe Mössbauer and micro-Raman spectroscopic studies.Journal of Chemical Society Faraday Transactions 93:3209–3215.

    Article  CAS  Google Scholar 

  • Burdige, D. J. 1993. The biogeochemistry of manganese and iron reduction in marine sediments.Earth Science Reviews 35: 249–284.

    Article  CAS  Google Scholar 

  • Burns, R. G. andV. E. Burns. 1975. Manganese oxides, p. 1–46.In R. G. Burns (ed.), Marine Minerals. Mineralogical Society of America. Washington, D. C.

    Google Scholar 

  • Canfield, D. E. 1989. Reactive iron in marine sediments.Geochimica et Cosmochimica Acta 53:619–632.

    Article  CAS  Google Scholar 

  • Canfield, D. E., R. Raiswell, andS. Bottrell. 1992. The reactivity of sedimentary iron minerals toward sulfide.American Journal of Science 292:659–683.

    Article  CAS  Google Scholar 

  • Canfield, D. E., B. Thamdrup, andJ. W. Hansen. 1993. The anaerobic degradation of organic matter in Danish coastal sediment.Geochimica et Cosmochimica Acta 57:3867–3883.

    Article  CAS  Google Scholar 

  • Cline, J. D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters.Limnology and Oceanography 14: 454–458.

    CAS  Google Scholar 

  • Coleman, M. L. 1993. Microbial processes: Controls on the shape and composition of carbonate concretions.Marine Geology 113:127–140.

    Article  CAS  Google Scholar 

  • County of Fyn. 2001. Coastal Waters 2000 (in Danish). Vandmiljøovervågningen. Natur- og vandmiljøafdelingen. Fyns Amt, Odense, Denmark.

    Google Scholar 

  • Dauer, D. M., A. J. Rodi, andJ. A. Ranasinghe. 1992. Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay.Estuaries 15:384–391.

    Article  CAS  Google Scholar 

  • Fossing, H., B. Thamdrup, andB. B. Jørgensen. 1992. Sulfur, iron and manganese cycling in marine sediments (Aarhus Bay, Denmark) (in Danish).Havforskning fra Miljøslyrelsen 15: 1–77.

    Google Scholar 

  • Freeman, D. S. andW. G. Chapman. 1971. An improved oxalate method for determination of active oxygen in manganese dioxide.Analyst 96:865–869.

    Article  CAS  Google Scholar 

  • Friedl, G., B. Wehrli, andA. Manceau. 1997. Solid phases in the cycling of manganese in eutrophic lakes: New insights from EXAFS spectroscopy.Geochimica et Cosmochimica Acta 61: 275–290.

    Article  CAS  Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman, andV. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis.Geochimica et Cosmochimica Acta 43:1075–1090.

    Article  CAS  Google Scholar 

  • Haese, R. R., K. Wallmann, A. Dahmke, U. Kretzmann, P. J. Müller, andH. D. Schulz. 1997. Iron species determination to investigate early diagenetic reactivity in marine sediments.Geochimica et Cosmochimica Acta 61:63–72.

    Article  CAS  Google Scholar 

  • Heip, C. 1995. Eutrophication and zoobenthos dynamics.Ophelia 41:113–136.

    Google Scholar 

  • Hines, M. E., D. A. Bazylinski, J. B. Tugel, andW. B. Lyons. 1991. Anaerobic microbial biogeochemistry in sediments from two basins in the Gulf of Maine: Evidence for iron and manganese reduction.Estuarine, Coastal and Shelf Science 32: 313–324.

    Article  CAS  Google Scholar 

  • Jürgensen, C., P. Andersen, L. Bisschop-Larsen, E. Glob, F. Nørgaard, G. R. Larsen, S. Larsen, N. Rask, M. Thybo, H. Tornbjerg, andM. Wehrs. 1996. Odense Fjord. Courty of Fyn, Nature Management and Water Quality Division. Odense, Denmark.

    Google Scholar 

  • Kostka, J. E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton, andE. Kristensen. 2002. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments.Limnology and Oceanography 47:230–240.

    CAS  Google Scholar 

  • Krause-Jensen, D., P. B. Christensen, andS. Rysgaard. 1999. Oxygen and nutrient dhnamics within mats of the filamentous macroalgaeChaetomorpha linum.Estuaries 22:31–38.

    Article  CAS  Google Scholar 

  • Kristensen, E. 1993. Seasonal variation in benthic community metabolism and nitrogen dynamics in a shallow, organic-poor Danish lagoon.Estuarine, Coastal and Shelf Science 36:565–586.

    Article  CAS  Google Scholar 

  • Kristiansen, K. D., E. Kristensen, andM. H. Jensen. 2002. The influence of water column hypoxia on the behaviour of manganese and iron in sandy coastal marine sediment.Estuarine, Coastal and Shelf Science 55:645–654.

    Article  CAS  Google Scholar 

  • Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction.Microbiological Reviews 55:259–287.

    CAS  Google Scholar 

  • Lovley, D. R. andE. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments.Applied and Environmental Microbiology 51:683–689.

    CAS  Google Scholar 

  • Lovley, D. R. andE. J. P. Phillips. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments.Applied and Environmental Microbiology 53:1536–1540.

    CAS  Google Scholar 

  • Lovley, D. R. andE. J. P. Phillips. 1988. Manganese inhibition of microbial iron reduction in anaerobic sediments.Geomicrobiology Journal 6:145–155.

    Article  CAS  Google Scholar 

  • Michalopoulos, P. andR. C. Aller. 1995. Rapid clay mineral formation in Amazon Delta sediments: Reverse weathering and oceanic element cycles.Science 270:614–617.

    Article  CAS  Google Scholar 

  • Middelburg, J. J., G. J. de Lange, andC. H. van der Wejden. 1987. Manganese solubility control in marine pore waters.Geochimica et Cosmochimica Acta 51:759–763.

    Article  CAS  Google Scholar 

  • Murray, J. W. 1979. Iron oxides, p. 47–98.In R. G. Burns (ed.), Marine Minerals. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  • Neira, C. andM. Rackemann. 1996. Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: Effects on the meiobenthos.Journal of Sea Research 36:153–170.

    Article  Google Scholar 

  • Postma, D. andC. A. J. Appelo. 2000. Reduction of Mn-oxides by ferrous iron in a flow system: Column experiment and reactive transport modeling.Geochimica et Cosmochimica Acta 64:1237–1247.

    Article  CAS  Google Scholar 

  • Rude, P. D. andR. C. Aller. 1989. Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sedmients.Journal of Sedimentary Petrology 59:704–716.

    CAS  Google Scholar 

  • Slomp, C. P., J. F. P. Malschaert, L. Lohse, andW. van Raaphorst. 1997. Iron and manganese cycling in different sedimentary environments on the North Sea continental margin.Continental Shelf Research 17:1083–1117.

    Article  Google Scholar 

  • Stookey, L. L. 1970. Ferrozine—A new spectrophotometric reagent for iron.Analytical Chemistry 42:779–781.

    Article  CAS  Google Scholar 

  • Stumm, W. andJ. J. Morgan. 1981. Aquatic Chemistry, 2nd edition. Wiley, New York.

    Google Scholar 

  • Sundby, B. andN. Silverberg. 1985. Pathways of managanese in an open estuarine system.Limnology and Oceanography 30:372–381.

    Article  CAS  Google Scholar 

  • Sørensen, J. andB. B. Jørgensen. 1987. Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn−Fe−S geochemistry.Geochimica et Cosmochimica Acta 51:1583–1590.

    Article  Google Scholar 

  • Tessier, A., P. G. C. Campbell, andH. Bisson. 1979. Sequential extraction procedures for the specification of particulate trace metals.Analytical Chemistry 51:844–851.

    Article  CAS  Google Scholar 

  • Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments.Advances in Microbial Ecology 16:41–84.

    CAS  Google Scholar 

  • Thamdrup, B. andD. E. Canfield. 1996. Pathways of carbon oxidation in continental margin sediments off central Chile.Limnology and Oceanography 41:1629–1650.

    Article  CAS  Google Scholar 

  • Thamdrup, B., H. Fossing, andB. B. Jørgensen. 1994a. Manganese, iron and sulfur cycling in a coastal marine sediment (Aarhus bay, Denmark).Geochimica et Cosmochimica Acta 58: 5115–5129.

    Article  CAS  Google Scholar 

  • Thamdrup, B., R. N. Glud, andJ. W. Hansen., 1994b. Manganese oxidation and in situ manganese fluxes from a coastal sediment.Geochimica et Cosmochimica Acta 58:2563–2570.

    Article  CAS  Google Scholar 

  • Trolard, F., J.-M. R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, andA. Herbillon. 1997. Identification of a green rust mineral in a reductomorphic soil by Mösbauer and Raman spectroscopies.Geochimica et Cosmochimica Acta 61:1107–1111.

    Article  CAS  Google Scholar 

  • Van Cappellen, P. andY. E. Wang. 1996. Cycling of iron and manganese in surface sediments—A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese.American Journal of Science 296: 197–243.

    Article  Google Scholar 

  • Viaroli, P., M. Bartoli, C. Bondayalli, R. R. Christian, G. Giordani, andM. Naldi. 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments.Hydrobiologia 329: 105–119.

    Article  CAS  Google Scholar 

  • Yao, W. andF. J. Millero. 1994. Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater.Marine Chemistry 52:1–16.

    Article  Google Scholar 

Source of Unpublished Materials

  • Hansen, M. W. Unpublished Data. Institute of Biology, Odense University, SDU, DK-5230 Odense M, Denmark.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Kristensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, E., Kristiansen, K.D. & Jensen, M.H. Temporal behavior of manganese and iron in a sandy coastal sediment exposed to water column anoxia. Estuaries 26, 690–699 (2003). https://doi.org/10.1007/BF02711980

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02711980

Keywords

Navigation