Skip to main content
Log in

Thermophysical properties of silicate slags

  • Overview
  • Slag Properties
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The optimization of metallurgical processes requires reliable data of the slag phase. This paper focuses on three properties that are relevant to heat and mass-transfer calculations — viscosities,thermal diffusivities, and surface tensions of silicate melts. A brief account of the experimental techniques used for the measurements of these properties, with special reference to the work carried out in the Division of Metallurgy, Royal Institute of Technology, Stockholm, Sweden, are presented, along with the advantages and limitations. As these properties are structure-oriented, the impact of structure on these properties is also presented. The paper is intended as a state-of-the-art review of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. THERMOLAB Project (Noordwijk, Holland: European Space Agency, 2001).

  2. F.D. Richardson,Physical Properties of Melts in Metallurgy (London: Academic Press, 1974), p. 1.

    Google Scholar 

  3. K.C. Mills,ISIJ International, 33 (1993), p. 148.

    CAS  Google Scholar 

  4. K.C. Mills and M. Suza,Slag Atlas, 2nd ed. (Düsseldorf, Germany: Verlag Stahleisen GmbH, 1995), p. 591.

    Google Scholar 

  5. G. Urbain and M. Boiret,Ironmaking Steelmaking, 17 (1990), p. 255.

    CAS  Google Scholar 

  6. W.L. McCauley and D. Apelian,Proc. of 2nd Int. Conf. on Metallurgical Slags and Fluxes, ed. H.A. Fine and D.R. Gaskell (Warrendale, PA: TMS, 1984), p. 925.

    Google Scholar 

  7. J.R. Van Wazer et al.,Viscosity and Flow Measurements (New York: Interscience, 1963).

    Google Scholar 

  8. K. Walters,Rheometry (London: Chapman & Hall, 1975).

    Google Scholar 

  9. J.M. Dealy,Rheometers for Molten Plastics (New York: Van Nostrand Reinhold, 1980).

    Google Scholar 

  10. J.E. McKie and J.F. Brandts,Methods in Enzymology, XXVI, part C, ed. C.H.W. Hirs and S.N. Timasheff (New York: Academic, 1972), p. 257.

    Google Scholar 

  11. P.E. Rouse Jr.,J. Chem. Phys., 21 (1953), p. 1272.

    Article  CAS  Google Scholar 

  12. F. Ji,Studies on Viscosities of Some Multicomponent Slags, Doctoral Thesis (Stockholm, Sweden: Royal Institute of Technology, 1998).

    Google Scholar 

  13. J.D. MacKenzie,Physico-Chemical Measurement at High Temperature, ed. J. Bockris, J.L. White, and J.D. MacKenzie (London: Butterworths, 1959).

    Google Scholar 

  14. L. Wittenberg and D. Ofte,Physico-Chemical Measurements, ed. R.A. Rapp (New York: Wiley, 1970).

    Google Scholar 

  15. R. Ladenberg,Ann. Phys., 22 (1907), p. 287.

    Article  Google Scholar 

  16. L.R. Bacon,J. Franklin Inst., 221 (1936), p. 251.

    Article  CAS  Google Scholar 

  17. K. Endell, A. Tielsch, and C. Wens,Metall Erz., 31 (1934), p. 353.

    CAS  Google Scholar 

  18. K. Endell and D. Kley,Stahl Eisen, 59 (1939), p. 677.

    CAS  Google Scholar 

  19. J.D. Ferry,Viscoelastic Properties of Polymers, 3rd ed. (New York: Wiley, 1980).

    Google Scholar 

  20. A.Y. Malkin et al.,Experimental Methods of Polymer Physics, part 3 (Engelwood Cliffs, NJ: Prentice-Hall, 1983).

    Google Scholar 

  21. G. Harrison and A.J. Barlow,Methods of Experimental Physics, vol. 19, ed. P.D. Edmonds (New York: Academic, 1981), p. 137.

    Google Scholar 

  22. O.E. Meyer,Poggendorfs Ann, 13 (1961), pp. 55, 139, 383.

    Google Scholar 

  23. K.C. Mills,Viscosities of Molten Slags, NPL Report (Teddington, Middlesex, U.K.: NPL, 1992).

    Google Scholar 

  24. Du Sichen, J. Bygden, and S. Seetharaman,Met. Mat. Trans. B, 25B (1994), p. 1.

    Google Scholar 

  25. F. Shahbazian,Viscosities of Some Slag Systems Containing Calcium Fluoride, Doctoral Thesis (Stockholm, Sweden: Royal Institute of Technology, 2001).

    Google Scholar 

  26. B. Vidacak,Viscosities of Complex Slags and the Impact of the Same on Foaming in EAF, Licentiate Thesis (Stockholm, Sweden: Royal Institute of Technology, 2001).

    Google Scholar 

  27. K. Ogino, K. Nishiwaki, and T. Yamamoto,Tetsuto-Hagane, 65 (1979), p. S683.

    Google Scholar 

  28. H.A. Fine, T. Engh, and J.F. Elliott,Met. Trans. B, 7B (1976), p. 277.

    Article  CAS  Google Scholar 

  29. T. Sakuraya et al.,Nippon-Kinzoku-Gakkaishi, 46 (1982), p. 1131.

    CAS  Google Scholar 

  30. H. Ohta, Y. Waseda, and Y. Shiraishi,Proc. 2nd Inter. Symp. on Metallurgical Slags and Fluxes (Warrendale, PA: The Metallurgical Society of AIME, 1984), p. 863.

    Google Scholar 

  31. M. Kishimoto et al., in Ref. 30, p. 891.

    Google Scholar 

  32. H. Ohta et al.,Proc. 4th Inter. Conf. on Molten Slags and Fluxes (Sendai, Japan: ISIJ, 1992), p. 421.

    Google Scholar 

  33. Y. Waseda et al.,High Temp. Mat. Processes, 13 (1994), p. 267.

    CAS  Google Scholar 

  34. R. Eriksson and S. Seetharaman, submitted for publication toMet. Mat. Trans. (2002).

  35. R. Eriksson, M. Hayashi, and S. Seetharaman, submitted for publication toInter. J. Thermophys. (2002).

  36. K. Nagata, M. Susa, and K. S. Goto,Tetsu-to-Hagane, 69 (1983), p. 51.

    Google Scholar 

  37. K. Nagata and K.S. Goto, in Ref. 30, p. 875.

    Google Scholar 

  38. M. Hayashi et al.,Phys. Chem. Glasses, 42 (2001), p. 6.

    CAS  Google Scholar 

  39. M. Susa et al.,Ironmaking and Steelmaking, 28 (2001), p. 390.

    Article  CAS  Google Scholar 

  40. Y. Waseda and J. M. Toguri,The Structure and Properties of Oxide Melts (River Edge, NJ: World Scientifi c Publishing Co. Pte. Ltd., 1998), p. 146.

    Google Scholar 

  41. K.C. Mills,Proc. 3rd Inter. Conf. on Molten Slags and Fluxes (London: The Institute of Metals, 1989), p. 59.

    Google Scholar 

  42. M.M. Ammar et al.,J. Non-Cryst. Solids, 53 (1982), p. 165.

    Article  CAS  Google Scholar 

  43. J.A.V. Butler,Proc. R. Soc. Lond., Ser. A, 135 (1932), p. 348.

    Article  Google Scholar 

  44. R. Speiser, D.R. Poirier, and K.S. Yuem,Scr. Metall., 21 (1987), p. 687.

    Article  CAS  Google Scholar 

  45. K.S. Yuem, R. Speiser, and D.R. Poirier,Metall. Trans. B, 20B (1989), p. 693.

    Google Scholar 

  46. T.P. Hoar and D.A. Melford,Trans. Faraday Soc., 53 (1957), p. 315.

    Article  CAS  Google Scholar 

  47. K. Monma and H. Suto,J. Jpn. Inst. Metals, 25 (1961), p. 65.

    Google Scholar 

  48. T. Tanaka and I. Iida,Steel Res., 65 (1994), p. 21.

    CAS  Google Scholar 

  49. T. Tanaka et al.,Z. Metallkd., 87 (1996), p. 380.

    CAS  Google Scholar 

  50. T. Tanaka and S. Hara,Z. Metallkd., 90 (1999), p. 348.

    CAS  Google Scholar 

  51. J. Choi and H. Lee,ISIJ Int., 42 (2002), p. 221.

    CAS  Google Scholar 

  52. K. Nakajima,Tetsu-to-Hagane, 80 (1994), p. 599.

    CAS  Google Scholar 

  53. R.E. Boni and G. Derge,J. Met., 8 (1956), p. 53.

    CAS  Google Scholar 

  54. K.C. Mills and B.J. Keene,Int. Mater. Rev., 32 (1987), p. 1.

    CAS  Google Scholar 

  55. K. Gunji and T. Dan,Trans. Iron Steel Inst. Jpn., 14 (1974), p. 162.

    CAS  Google Scholar 

  56. K. Mukai and T. Ishikawa,J. Jpn. Inst. Metals, 45 (1981), p. 147.

    CAS  Google Scholar 

  57. K. Ogino et al.,Tetsu-to-Hagane, 52 (1966), p. 1427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aune, R.E., Hayashi, M., Nakajima, K. et al. Thermophysical properties of silicate slags. JOM 54, 62–69 (2002). https://doi.org/10.1007/BF02709753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709753

Keywords

Navigation