Skip to main content
Log in

On the origin of the barriers and the structures of acetaldehyde in its ground and first singlet excited state

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Anab initio study of the ground and the first singlet excited states of acetaldehyde has been performed to analyze the molecular properties as a function of the methyl torsion and the aldehydic hydrogen wagging angles. The structural characteristics and the conformational behaviour in both electronic states have been determined. The important structural changes between the two states have been analyzed by a decomposition of the total energy into its components. It was found that the methyl torsion barriers arise mainly from attractive interactions. Evidence is presented which shows that these barriers arise from in-plane and out-of-plane hyperconjugative effects involving the oxygen atom. It is also shown that the pyramidalization experienced by the carbonyl carbon in the first singlet excited state has two sources, namely, a decrease in the electronic repulsion and an increase in the electron-nucleus attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clouthier DJ, Moule DC (1989) Periodic Group Relationships in the Spectroscopy of the Carbonyls, Ketenes and Nitriles: The Effect of Substitution by Sulfur, Selenium, and Phosphorus. In: Dewar MJS, Dunitz JD, Hafner K, Heilbronner E, Ito S, Lehn J-M, Niedenzu K, Raymond KN, Rees CW, Vögtle F (eds) Topics in Current Chemistry, vol 150, Springer, Berlin, pp 167–247

    Google Scholar 

  2. Noble M, Lee EKC (1984) J Chem Phys 81:1632

    Google Scholar 

  3. Del Bene JE, Worth GT, Marchese FT, Conrad ME (1975) Theor Chim Acta 36:195

    Google Scholar 

  4. Bernardi F, Robb MA, Tonachini G (1979) Chem Phys Lett 66:195

    Google Scholar 

  5. Wiberg KB, Walters V, Colson SD (1984) J Phys Chem 88:4723

    Google Scholar 

  6. Wiberg KB, Martin E (1985) J Am Chem Soc 107:5035

    Google Scholar 

  7. Ozkabak AG, Goodman L (1992) J Chem Phys 96:5958

    Google Scholar 

  8. Crighton JS, Bell S (1985) J Mol Spectrosc 112:285

    Google Scholar 

  9. Baba M, Nagashima U, Hanazaki I (1985) J Chem Phys 83:3514

    Google Scholar 

  10. Kilb RW, Lin CC, Wilson Jr EB (1957) J Chem Phys 26:1695

    Google Scholar 

  11. Baba M, Hanazaki I, Nagashima U (1985) J Chem Phys 82:3938

    Google Scholar 

  12. Fink WH, Allen LC (1967) J Chem Phys 46:2276

    Google Scholar 

  13. Jorgensen WL, Allen LC (1970) Chem Phys Lett 7:483; Jorgensen WL, Allen LC (1971) J Am Chem Soc 93:567

    Google Scholar 

  14. Liberles A, O'Leary B, Eilers JE, Whitman DR (1972) J Am Chem Soc 94:6894

    Google Scholar 

  15. Moule DC, Ng KHK (1985) Can J Chem 63:1378

    Google Scholar 

  16. Walsh AD (1953) J Chem Soc 2036

  17. Dupuis M, Spangler D, Wendoloski JJ (1980) in: National Resource for Computations in Chemistry, Software Catalog. University of California. Berkeley, CA. Program QG01; Schmidt MW, Boatz JA, Baldridge KK, Koseki S, Gordon MS, Elbert ST, Lam B (1987) QCPE Bull 7:115; Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki S, Gordon MS, Nguyen KA, Windus TL, Elbert ST (1990) QCPE Bull 10:52

    Google Scholar 

  18. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Google Scholar 

  19. Smeyers YG, Niño A, Bellido MN (1988) Theor Chim Acta 74:259

    Google Scholar 

  20. Broyden CG (1970) J Inst Maths Appl 6:76; Fletcher R (1970) Comp J 13:317; Goldfard D (1970) Math Comp 24:23; Shanno DF (1970) Math Comp 24:647

    Google Scholar 

  21. Nösberger P, Bauder A, Günthard HH (1973) Chem Phys 1:418; Harmony MD, Laurie VW, Kuczkowski RL, Schwendeman RH, Ramsay DA, Lobas FJ, Lafferty WJ, Maki AG (1979) J Phys Chem Ref Data 8:619

    Google Scholar 

  22. McKean DC (1978) Chem Soc Rev 7:399

    Google Scholar 

  23. Pople JA, Gordon M (1967) J Am Chem Soc 89:4253

    Google Scholar 

  24. Kleiner I, Hougen JT, Suenram RD, Lovas FJ, Godefroid M (1991) J Mol Spectrosc 148:38; Kleiner I, Hougen JT, Suenram RD, Lovas FJ, Godefroid M (1992) J Mol Spectrosc 153:578

    Google Scholar 

  25. Allen LC (1968) Chem Phys Lett 2:597

    Google Scholar 

  26. Neumann D, Moskowitz JW (1968) J Chem Phys 49:2056

    Google Scholar 

  27. Hellmann H (1937) in: Einführung in der Quantemchemie, Deuticke, Leipzig, p 285; Feynman RP (1939) Phys Rev 56:340

    Google Scholar 

  28. Mulliken RS, Rieke CA, Brown WG (1941) J Am Chem Soc 63:41

    Google Scholar 

  29. Dill JD, Schleyer PR, Pople JA (1976) J Am Chem Soc 98:1663

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Caro, C., Niño, A. & Moule, D.C. On the origin of the barriers and the structures of acetaldehyde in its ground and first singlet excited state. Theoret. Chim. Acta 88, 299–310 (1994). https://doi.org/10.1007/BF01113453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113453

Key words

Navigation