Skip to main content
Log in

Ultrafast chemistry in complex and confined systems

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Self-organized molecular assemblies play a crucial role in many natural and biological processes. Recent applications of ultrafast laser spectroscopy and computer simulations revealed that chemistry in a confined environment is fundamentally different from that in ordinary solutions. Many recent examples of slow dynamics in constrained environments and their biological implications are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller A and O’Brien D F 2002Chem. Rev. 102 727

    Article  CAS  Google Scholar 

  2. Nitschke J R and Lehn J-M 2003Proc. Natl. Acad. Sci. (USA) 100 11970

    Article  CAS  Google Scholar 

  3. Fernandez-Lopez S, Kim H-S, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger D A, Wilcoxen K M and Ghadiri M R 2001Nature (London) 412 452

    Article  CAS  Google Scholar 

  4. Bagchi B 2003Annu. Rep. Prog. Chem. C99 127

    Google Scholar 

  5. Bhattacharyya K 2003Acc. Chem. Res. 35 95

    Article  CAS  Google Scholar 

  6. Pal S K, Peon J, Bagchi B and Zewail A H 2002J. Phys. Chem. B106 12376

    Google Scholar 

  7. Nandi N, Bhattacharyya K and Bagchi B 2000Chem. Rev. 100 2013

    Article  CAS  Google Scholar 

  8. Levinger N E 2000Curr. Opin Colloid. Interface Science 5 118

    Article  CAS  Google Scholar 

  9. Jimenez R, Fleming G R, Kumar P V and Maroncelli M 1994Nature (London) 369 471

    Article  CAS  Google Scholar 

  10. Nandi N, Roy S and Bagchi B 1995J. Chem. Phys. 102 1390

    Article  CAS  Google Scholar 

  11. Fujino T, Arzhantsev S Y and Tahara T 2001J. Phys. Chem. A105 8123

    Google Scholar 

  12. Liu R S H 2001Acc. Chem. Res. 34 555

    Article  CAS  Google Scholar 

  13. Kim J E, McCamant W, Zhu L and Mathies R A 2001J. Phys. Chem. B105 1240

    Google Scholar 

  14. Ruhman S, Hou B, Friedman N, Ottolenghi M and Sheves M 2002J. Am. Chem. Soc. 124 8854

    Article  CAS  Google Scholar 

  15. Zimmer M 2002Chem. Rev. 102 759

    Article  CAS  Google Scholar 

  16. Groot M L, van Wilderen L J G W, Larsen D S, van der Horst M A, van Stokkum IHM, Hellingwerf K J and van Grondelle R 2003Biochemistry 42 10054

    Article  CAS  Google Scholar 

  17. Mandal D, Tahara T, Webber N M and Meech S R 2002Chem. Phys. Lett. 358 495

    Article  CAS  Google Scholar 

  18. Bussotti L, Cacelli I, D’Auria M, Foggi P, Lesina G, Silvani A and Villani V 2003J. Phys. Chem. A107 9079

    Google Scholar 

  19. Waldeck D H 1991Chem. Rev. 91 415

    Article  CAS  Google Scholar 

  20. Pal S K, Datta A, Mandal D and Bhattacharyya K 1998Chem. Phys. Lett. 288 793

    Article  CAS  Google Scholar 

  21. Duveneck G L, Sitzmann E V, Eisenthal K B and Turro N J 1989J. Phys. Chem. 93 7166

    Article  CAS  Google Scholar 

  22. Takei M, Yui H, Hirose Y and Sawada T 2001J. Phys. Chem. A105 11395

    Google Scholar 

  23. Ellison E H and Thomas J K 2001J. Phys. Chem. B105 2757

    Google Scholar 

  24. Mandal D, Pal S K, Sukul D and Bhattacharyya K 1999J. Phys. Chem. A103 8156

    Google Scholar 

  25. Quitevis E L, Marcus A H and Fayer M D 1993J. Phys. Chem. 97 5762

    Article  CAS  Google Scholar 

  26. Benniston A C, Matousek P, McCulloch I E, Parker A W and Towrie M 2003J. Phys. Chem. A107 4347

    Google Scholar 

  27. Toutchkine A, Kraynov V and Hahn K 2003J. Am. Chem. Soc. 125 4132

    Article  CAS  Google Scholar 

  28. Baptista M S and Indig J L 1998J. Phys. Chem. B102 4678

    Google Scholar 

  29. Sitzmann E V and Eisenthal K B 1988J. Phys. Chem. 92 4579

    Article  CAS  Google Scholar 

  30. Shi X, Borguet E, Tarnovsky A N and Eisenthal K B 1996Chem. Phys. 205 167

    Article  CAS  Google Scholar 

  31. Maroncelli M 1993J. Mol. Liq. 57 1

    Article  CAS  Google Scholar 

  32. Grant E H, Sheppard R J and South G P 1978Dielectric behavior of biological molecules (Oxford: Clarendon)

    Google Scholar 

  33. Gregory R B (ed.) 1995Protein-solvent interactions (New York: Marcel Dekker)

    Google Scholar 

  34. Pethig R 1992Annu. Rev. Phys. Chem. 43 177

    Article  CAS  Google Scholar 

  35. Nandi N and Bagchi B 1997J. Phys. Chem. B101 10954

    Google Scholar 

  36. Balasubramanian S, Pal S and Bagchi B 2002Phys. Rev. Lett. 89 115505–1

    Article  CAS  Google Scholar 

  37. Balasubramanian S and Bagchi B 2001J. Phys. Chem. B105 12529

    Google Scholar 

  38. Pal S, Balasubramanian S and Bagchi B 2003J. Phys. Chem. B107 5194

    Google Scholar 

  39. Balasubramanian S and Bagchi B 2002J. Phys. Chem. B106 3668

    Google Scholar 

  40. Bruce C D, Senapati S, Berkowitz M L, Perera L and Forbes M D E 2002J. Phys. Chem. B106 10902

    Google Scholar 

  41. Vajda S, Jimenez R, Rosenthal S J, Fidler V, Fleming G R and Castner E W Jr 1995J. Chem. Soc., Faraday Trans. 91 867

    Article  CAS  Google Scholar 

  42. Sen S, Sukul D, Dutta P and Bhattacharyya K 2001J. Phys. Chem. A105 10635

    Google Scholar 

  43. Nandi N and Bagchi B 1996J. Phys. Chem. 100 13914

    Article  CAS  Google Scholar 

  44. Ju C and Bohnne C 1996J. Phys. Chem. 100 3847

    Article  CAS  Google Scholar 

  45. Sen S, Dutta P, Mukherjee S and Bhattacharyya K 2002J. Phys. Chem. B106 7745

    Google Scholar 

  46. Mandal D, Sen S, Tahara T and Bhattacharyya K 2002Chem. Phys. Lett. 359 77

    Article  CAS  Google Scholar 

  47. Sen P, Mukherjee S, Halder A and Bhattacharyya KChem. Phys. Lett. (in press)

  48. Venables D S, Huang K and Schmuttenmaer C A 2001J. Phys. Chem. B105 9132

    Google Scholar 

  49. Dutta P, Sen P, Mukherjee S, Halder A and Bhattacharyya K 2003J. Phys. Chem. B107 10815

    Google Scholar 

  50. Sen S, Sukul D, Dutta P and Bhattacharyya K 2001J. Phys. Chem. A105 7495

    Google Scholar 

  51. Faeder J, Albert M V and Ladanyi B M 2003Langmuir 19 2514

    Article  CAS  Google Scholar 

  52. Senapati S and Chandra A 2001J. Phys. Chem. B105 5106

    Google Scholar 

  53. Senapati S and Berkowitz M L 2003J. Chem. Phys. 118 1937

    Article  CAS  Google Scholar 

  54. de Gennes P G 1979 inScaling concepts in polymer physics (Ithaca: Cornell University Press)

    Google Scholar 

  55. Deo N, Jockusch S, Turro N J and Somasundaran P 2003Langmuir 19 5083

    Article  CAS  Google Scholar 

  56. Narenberg R, Kliger J and Horn D 1999Angew Chem, M Ed. Engl. 38 1626

    Article  Google Scholar 

  57. Sen S, Sukul D, Dutta P and Bhattacharyya K 2002J. Phys. Chem. B106 3763

    Google Scholar 

  58. Dutta P, Sen S, Mukherjee S and Bhattacharyya K 2002Chem. Phys. Lett. 359 15

    Article  CAS  Google Scholar 

  59. Dutta P, Sukul D, Sen S and Bhattacharyya K 2003Phys. Chem. Chem. Phys. 5 4875

    Article  CAS  Google Scholar 

  60. Lissi E A and Abuin E 1985J. Colloid. Inter. Sci. 105 1

    Article  CAS  Google Scholar 

  61. Almgren M, Greiser F and Thomas J K 1979J. Am. Chem. Soc. 101 279

    Article  CAS  Google Scholar 

  62. Frauchiger L, Shirota H, Uhrich K E and Castner E W Jr 2002J. Phys. Chem. B106 7463

    Google Scholar 

  63. Bellisent-Funnel M-C (ed.) 1999Hydration processes in biology: Theoretical and experimental approaches (Amsterdam: IOS Press)

    Google Scholar 

  64. Hydration processes in biological and macromolecular systems 1996Faraday Discuss. 103 p. 1

    Article  Google Scholar 

  65. Otting G, Lipenish E and Wuthrich K 1991Science 254 974

    Article  CAS  Google Scholar 

  66. Denisov V P, Jonsson B-H and Halle B 1999Nature Struct. Biol. 6 253

    Article  CAS  Google Scholar 

  67. Marzola P and Gratton E 1991J. Phys. Chem. 95 9488

    Article  CAS  Google Scholar 

  68. Pierce D W and Boxer S G 1992J. Phys. Chem. 96 5560

    Article  CAS  Google Scholar 

  69. Jordanides X J, Lang M J, Song X and Fleming G R 1999J. Phys. Chem. B103 7995

    Google Scholar 

  70. Pal S K, Mandal D, Sukul D, Sen S and Bhattacharyya K 2001J. Phys. Chem. B105 1438

    Google Scholar 

  71. Dutta P, Sen P, Mukherjee S and Bhattacharyya K 2003Chem. Phys. Lett. 382 426

    Article  CAS  Google Scholar 

  72. Pal S K, Peon J and Zewail A H 2002Proc. Natl. Acad. Sci. (USA) 99 1763

    Article  CAS  Google Scholar 

  73. Mandal D, Sen S, Sukul D, Bhattacharyya K, Mandal A K, Banerjee R and Roy S 2002J. Phys. Chem. B106 10741

    Google Scholar 

  74. Pal S K, Peon J and Zewail A H 2002Proc. Natl. Acad. Sci. (USA) 99 15297

    Article  CAS  Google Scholar 

  75. Pal S K, Peon J and Zewail A H 2002Proc. Natl. Acad. Sci. (USA) 99 10964

    Article  Google Scholar 

  76. Dutta P, Sen P, Halder A, Mukherjee S, Sen S and Bhattacharyya K 2003Chem. Phys. Lett. 377 229

    Article  CAS  Google Scholar 

  77. Sen P, Mukherjee S, Dutta P, Halder A, Mandal D, Banerjee R, Roy S and Bhattacharyya K 2004J. Phys. Chem. B107 14563

    Google Scholar 

  78. Mukherjee S, Sen P, Halder A, Sen S, Dutta P and Bhattacharyya K 2003Chem. Phys. Lett. 379 471

    Article  CAS  Google Scholar 

  79. Brauns E B, Madaras M L, Coleman R S, Murphy C J and Berg M A 2002Phys. Rev. Lett. 88 158101–1

    Article  CAS  Google Scholar 

  80. Pal S K, Zhao L, Xia T and Zewail A H 2003Proc. Natl. Acad. Sci. (USA) 100 13746

    Article  CAS  Google Scholar 

  81. Farrrer R A and Fourkas J T 2003Acc. Chem. Res. 36 605

    Article  CAS  Google Scholar 

  82. Pal S K, Sukul D, Mandal D, Sen S and Bhattacharyya K 2000J. Phys. Chem. B104 2613

    Google Scholar 

  83. Bauman R, Ferrante C, Deeg F W and Brauchle C 2001J. Chem. Phys. 114 5781

    Article  CAS  Google Scholar 

  84. Halder A, Sen S, Das Burman, A, Patra A and Bhattacharyya K 2004J. Phys. Chem. (in press)

  85. Nag A and Bhattacharyya K 1988Chem. Phys. Lett. 151 474

    Article  CAS  Google Scholar 

  86. Nag A and Bhattacharyya K 1989Chem. Phys. Lett. 157 83

    Article  Google Scholar 

  87. Bhattacharyya K and Chowdhury M 1993Chem. Rev. 93 507

    Article  CAS  Google Scholar 

  88. Grabowski Z R, Rotkiewicz K and Rettig W 2003Chem. Rev. 103 3899

    Article  Google Scholar 

  89. Fayed T A, Organero J A, Garcia-Ochoa I, Tormo L and Douhal A 2002Chem. Phys. Lett. 364 108

    Article  CAS  Google Scholar 

  90. Tolbert L M and Solnstev K M 2002Acc. Chem. Res. 35 19

    Article  CAS  Google Scholar 

  91. Saeki M, Ishiuchi S-I, Sakai M and Fuji M 2001J. Phys. Chem. A105 10045

    Google Scholar 

  92. Cohen B, Huppert D, Solnstev K M, Tsfadia Y, Nachliel E and Gutman M 2002J. Am. Chem. Soc. 124 7539

    Article  CAS  Google Scholar 

  93. Hansen J E, Pines E and Fleming G R 1992J. Phys. Chem. 96 6904

    Article  CAS  Google Scholar 

  94. Mandal, D, Pal S K and Bhattacharyya K 1998J. Phys. Chem. A102 9710

    Google Scholar 

  95. Dutta P, Halder A, Mukherjee S, Sen P, Sen S and Bhattacharyya K 2002Langmuir 18 7867

    Article  CAS  Google Scholar 

  96. Organero JA and Douhal A 2003Chem. Phys. Lett. 373 426

    Article  CAS  Google Scholar 

  97. Pal S K, Mandal D, Sukul D and Bhattacharyya K 1999Chem. Phys. 249 63

    Article  CAS  Google Scholar 

  98. Tavernier H L, Laine F and Fayer M D 2001J. Phys. Chem. A105 8944

    Google Scholar 

  99. Kumbhakar M, Nath S and Pal H 2003J. Chem. Phys. 119 388

    Article  CAS  Google Scholar 

  100. Chakraborty D, Chakrabarty A, Seth D and Sarkar N 2003Chem. Phys. Lett. 382 508

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kankan Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, P., Bhattacharyya, K. Ultrafast chemistry in complex and confined systems. J Chem Sci 116, 5–16 (2004). https://doi.org/10.1007/BF02708207

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708207

Keywords

Navigation