Skip to main content
Log in

Enhancement of oxygen transfer in hollow fiber membrane by the vibration method

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess and quantify the beneficial effects of gas exchange according to the various frequencies of the sinusoidal wave that are excited by a PZT actuator, on patients suffering from acute respiratory distress syndrome (ARDS). In this study, an experimental method for the flow hydrodynamics was developed through a bundle of sinusoidally vibrated hollow fibers to observe how well vibrations might enhance the performance of the VIVLAD. We measured the effect of the various excitation frequencies of the PZT actuator on the gas transfer rates and hemolysis from the maximum gas transfer rate. As a result, the maximum oxygen transfer rate was reached at the maximum amplitude and through the transfer of vibrations to the hollow fiber membranes. The device was maximum excited by a frequency band of 7 Hz at various water flow rates, as this frequency was the 2nd mode resonance frequency of the flexible beam. 675 hollow fiber membranes were also bundled, within the blood flow, into the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AAMI Standard: Cardiovascular/Neurology Standards for Blood/Gas Exchanger Devices (Oxygenators); August 14 (1998).

  • Beek, W. L., Muttzell, K. M. K. and van Heuven, J. W.,Transport Phenomena (2th ed.), John Wiley & Sons (ASIA) PTE LTD, Singapore, 262 (1999).

    Google Scholar 

  • Bird, R. B., Stewart, W. E. and Lightfoot, E. N.,Transport Phenomena (2th ed.), New York, John Wiley & Sons Inc., 675 (2002).

    Google Scholar 

  • Campell, T. G., “Changing Criteria for the Artificial Lung: Historic Controls on the Technology of ECMO,”ASAIOJ.,40, 109 (1994).

    Article  Google Scholar 

  • Conrad, S. A., “Major Findings from the Clinical Trials of the Intravascular Oxygenator,”Artificial Organs,18, 846 (1994).

    CAS  Google Scholar 

  • Fazzalari, F. L., Bartlett, R. H., Bonnel, M. R. and Montoya, J. P., “An trapleural Lung Prosthesis: Rationale, Design and Testing,”Artificial Organs,18, 801 (1994).

    CAS  Google Scholar 

  • Fedespiel, W. J., Hout, M. S., Hewitt, T. J., Lund, L. W., Heinrichm, S. A., Litwak, P., Walters, F. R., Reeder, G.D., Borovetz, H. S. and Hattler, B. G., “Development of a Low Flow Resistance Intravenous Oxygenator,”ASAIOJ.,43, M725 (1997).

    Article  Google Scholar 

  • Gattinoni, L., Pesenti, A. and Rossi, G. P., “Treatment of Acute Respiratory Failure with Low-frequency Positive-pressure Ventilation and Extracorporeal Removal of CO2,”Lancet,2, 292 (1980).

    Article  CAS  Google Scholar 

  • Hewitt, T. J., Hattler, B. G. and Federspiel, W. J., “A Mathematical Model of Gas Exchange in an Intravenous Membrane Oxygenator,”Ann. Biomed. Eng.,26, 166 (1998).

    Article  CAS  Google Scholar 

  • Ichiba, S. and Bartlett, R. H., “Current Status of Extracorporeal Membrane Oxygenation for Severe Respiratory Failure,”Artificial Organs,20, 120 (1996).

    Article  Google Scholar 

  • ISO/DIS 7199 International Standard: Cardiovascular Implantants and Artificial Organs-Blood-Gas Exchangers (1996).

  • Kim, G. B., Kwon, T. K., Jheong, G R. and Lee, S. C., “Gas Transfer and Hemolysis Characteristics of a New Type Intravenous Lung Assist Device,”J. Biom. Eng. Res.,24(2), 121 (2003).

    Google Scholar 

  • Lee, S. C. and Kim, K. B., “Liquid Flow and Pressure Drop of an Outside Flow Membrane Oxygenator with Hollow Fibers,”J. Biomed. Eng. Res.,23(1), 27 (2002).

    CAS  Google Scholar 

  • Morin, P. J., Gosselin, C., Picard, R., Vincent, M., Giundoin, R. and Nicholl, C. I. H., “Implantable Artifificial Lung,”J. Thorac. Cardivasc.Surg. 74, 130 (1977).

    CAS  Google Scholar 

  • Mortensen, J. D., “Intravascular Oxygenator: A New Alternative Method for Augmenting Blood Gas Transfer in Patient with Acute Respiratory Failure,”Artif. Organs,16, 75 (1992).

    Article  CAS  Google Scholar 

  • Mulder, M.,Basic Principles of Membrane Technology, AA Dordrecht, Kluwer Academic Publishers, Netherlands, 418 (1996).

    Google Scholar 

  • Naito, K., Mizuguchi, K. and Nosè, Y., “The Need for Standardizing the Index of Hemolysis,”Artificial Organs,18, 7 (1994).

    Article  CAS  Google Scholar 

  • Nguyen, T. T., Zwischenberger, J. B., Tao, W., Traber, D. I., Herndon, D. N., Duncan, C. C., Bush, P. and Bidani, A., “Significant Enhancement of Carbon Dioxide Removal by a New Prototype IVOX,”ASAIO J.,39, M719 (1993).

    Article  CAS  Google Scholar 

  • Nosè, Y.,Recommended Practice for Assessment of Hemolysis in Continous Flow Blood Pump, West Conshohoken, PA: American Society of Testing and Materials, F04:40-41 (1998).

    Google Scholar 

  • Pesenti, A., Gattinoni, L., Kobolow, T. and Damia, G., “Extracorporeal Circulation in Adult Respiratory Failure,”ASAIO Trans.,34, 43 (1988).

    CAS  Google Scholar 

  • Snider, M. T., Campbell, D. B., Kofke, W. A., High, K. M., Russell, G. B., Keamy, M. F. and Williams, D. R., “Venovenous Perfusion of Adult and Children with Severe Acute Respiratory Distress Syndrome,”ASAIO Trans.,34, 1014 (1988).

    CAS  Google Scholar 

  • Snider, M. T., “Clinical Trails of an Intravenous Oxygenator in Patients with Adult Respiratory Distress Syndrome,”Anesthesiology,77, 855 (1972).

    Google Scholar 

  • Streeter, V. L., Wylie, E. B. and Bedford, K.,Fluid Mechanics (9th ed.), New York, McGrew-Hill Inc. (1998).

    Google Scholar 

  • Tanishita, K., Richardson, P. D. and Galletti, P. M., “Tightly Wound Coils of Microporous Tubing: Progress with Secondary Flow Blood Oxygenator Design,”Trans. ASME,21, 216 (1975).

    CAS  Google Scholar 

  • Vaslef, S. N., Mockros, L. F., Anderson, R. W. and Leonard, R. J., “Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators,”ASAIO J.,40, 990 (1994).

    Article  CAS  Google Scholar 

  • Weinberger, S. E.,Principles of Pulmonary Medicine, Philadelphia: Saunders (1992).

    Google Scholar 

  • Weissman, H. M. and Mockros, L. F., “Gas Transfer to Blood Flowing in Coiled Circular Tubes,”J. Eng. Mech. Div. ASCM.,94, 857 (1968).

    Google Scholar 

  • Woodhead, M. A., “Management of Pneumonia,”Respir. Med.,86, 459 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Beum Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, GB., Kim, SJ., Hong, CU. et al. Enhancement of oxygen transfer in hollow fiber membrane by the vibration method. Korean J. Chem. Eng. 22, 521–527 (2005). https://doi.org/10.1007/BF02706636

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706636

Key words

Navigation