Skip to main content
Log in

A comparative theoretical study of Au, Ag and Cu adsorption on TiO2 (110) rutile surfaces

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The adsorption properties of Au, Ag and Cu on TiO2 (110) rutile surfaces are examined using density functional theory slab calculations within the generalized gradient approximation. We consider five and four different adsorption sites for the metal adsorption on the stoichiometric and reduced surfaces, respectively. The metal-oxide bonding mechanism and the reactivity of metal atoms are also discussed based on the analyses of local density of states and charge density differences. This study predicts that Au atoms prefer to adsorb at the fourfold hollow site over the fivefold-coordinated Ti(5c) and in-plane and bridging O(2c) atoms with the adsorption energy of ≈0.6 eV. At this site, it appears that the covalent and ionic interactions with the Ti(5c) and the O(2c), respectively, contribute synergistically to the Au adsorption. At a neutral F 0s center on the reduced surface, Au binds to the surface via a rather strong ionic interaction with surrounding sixfold-coordinated Ti(6c) atoms, and its binding energy is much larger than to the stoichiometric surface. On the other hand, Ag and Cu strongly interact with the surface bridging O(2c) atoms, and the site between two bridging O(2c) atoms is predicted to be energetically the most favorable adsorption site. The adsorption energies of Ag and Cu at the B site are estimated to be ≈1.2 eV and ≈1.8 eV, respectively. Unlike Au, the interaction of Ag and Cu with a vacancy defect is much weaker than with the stoichiometric surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, S. P., Kresse, G. and Gillan, M. J., “A Systematic Study of the Surface Energetics and Structure of TiO2 (110) by First-principles Calculations,”Surf. Sci.,385, 386 (1997).

    Article  CAS  Google Scholar 

  • Bell, A. T., “The Impact of Nanoscience on Heterogeneous Catalysis,”Science,299, 1688 (2003).

    Article  CAS  Google Scholar 

  • Bennett, R. A., Stone, P., Price, N. J. and Bowker, M., “Two (1×2) Reconstructions of TiO2 (110): Surface Rearrangement and Reactivity Studied using Elevated Temperature Scanning Tunneling Microscopy,”Phys. Rev. Lett.,82, 3831 (1999).

    Article  CAS  Google Scholar 

  • Boccuzzi, F., Chiorino, A., Manzoli, M., Andreeva, D., Tabakova, T., Ilieva, L. and Iadakiev, V., “Cold, Silver and Copper Catalysts Supported OnTiO2 for Pure Hydrogen Production,”Catal. Today,75, 169 (2002).

    Article  CAS  Google Scholar 

  • Bogicevic, A. and Jennison, D. R., “Effect of Oxide Vacancies on Metal Island Nucleation,”Surf. Sci.,515, L481-L486 (2002).

    Article  CAS  Google Scholar 

  • Bredow, T. and Pacchioni, G., “Electronic Structure of an Isolated Oxygen Vacancy at the TiO2 (110) Surface,”Chem. Phys. Lett.,355, 417 (2002).

    Article  CAS  Google Scholar 

  • Campbell, C. T., Parker, S. C. and Starr, D. E., “The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering,”Science,298, 811 (2002).

    Article  CAS  Google Scholar 

  • Campbell, C. T., “Ultrathin Metal Films and Particles on Oxide Surfaces: Structural, Electronic and Chemisorptive Properties,”Surf. Sci. Rep.,27, 1 (1997).

    Article  CAS  Google Scholar 

  • Ceperley, D.M. and Alder, B. J., “Ground-state of the Electron Gas by a Stochastic Method,”Phys. Rev. Lett.,45, 566 (1980).

    Article  CAS  Google Scholar 

  • Charlton, G., Howes, P., Nicklin, C., Steadman, P., Taylor, J., Muryn, C., Harte, S., Mercer, J., McGrath, R., Norman, D., Turner, T. and Thornton, G., “Relaxation of TiO2(110)-(1×1) using Surface X-ray Diffraction,”Phys. Rev. Lett.,78, 495 (1997).

    Article  CAS  Google Scholar 

  • Choudhary, T.V. and Goodman, D.W., “Oxidation Catalyst by Supported Gold Nano-clusters,”Top. Catal.,21, 1 (2002).

    Article  Google Scholar 

  • Christensen, A. and Carter, E. A., “Adhesion of Ultrathin ZrO2(111) Films on Ni(111) from First Principles,”J. Chem. Phys.,114, 5816 (2001).

    Article  CAS  Google Scholar 

  • de Oliveira, A. L., Wolf, A. and Schuta, F., “Highly Selective Propene Epoxidation with Hydrogen/oxygen Mixtures over Titania-supported Silver Catalysts,”Catal. Lett.,73, 157 (2001).

    Article  Google Scholar 

  • Diebold, U., Anderson, J. F., Ng, K.-O. and Vanderbilt, D., “Evidence for the Tunneling Site on Transition-metal Oxides: TiO2 (110),”Phys. Rev. Lett.,77, 1322 (1996).

    Article  CAS  Google Scholar 

  • Eichler, A., Hafner, J., Furthmüller, J. and Kresse, G., “Structural and Electronic Properties of Rhodium Surfaces: An ab initio Approach,”Surf. Sci.,346, 300 (1996).

    Article  CAS  Google Scholar 

  • Ferrari, A.M. and Pacchioni, G., “Electronic Structure of F and V Centers on the MgO Surface,”J. Phys. Chem.,99, 17010 (1995).

    Article  CAS  Google Scholar 

  • Giordano, L., Pacchioni, G., Bredow, T. and Sanz, J. F., “Cu, Ag, and Au Atoms Adsorbed on TiO2 (110): Cluster and Periodic Calculations,”Surf. Sci.,471, 21 (2001).

    Article  CAS  Google Scholar 

  • Guo, Q., Cocks, I. and Williams, E. M., “Surface Structure of (1×2) Reconstructed TiO2 (110) Studied using Electron Stimulated Desorption ion Angular Distribution,”Phys. Rev. Lett.,77, 3851 (1996).

    Article  CAS  Google Scholar 

  • Hammer, B. and NØrskov, J. K., “Electronic Factors Determining the Reactivity of Metal Surfaces,”Surf. Sci.,343, 211 (1995).

    Article  CAS  Google Scholar 

  • Hansen, P. L., Wagner, J. B., Helveg, S., Rostrup-Nielsen, J. R., Clausen, B. S. and Topsoe, H., “Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals,”Science,295, 2053 (2002).

    Article  CAS  Google Scholar 

  • Harrison, N. M., Wang, X.G., Muscat, J. and Scheffler, M., “The Influence of Soft Vibrational Modes on our Understanding of Oxide Surface Structure,”Faraday Discussions,114, 305 (1999).

    Article  CAS  Google Scholar 

  • Haruta, M., “Size-and Support-dependency in the Catalysis of Gold,”Catal. Today,36, 153 (1997).

    Article  CAS  Google Scholar 

  • Hayash, T., Tanaka, K. and Haruta, M., “Selective Vapor-phase Epoxidation of Propylene over Au/TiO2 Catalysts in the Presence of Oxygen and Hydrogen,”J. Catal.,178, 566 (1998).

    Article  Google Scholar 

  • Kolmakov, A. and Goodman, D.W., “Imaging Gold Clusters on TiO2 (110) at Elevated Pressures and Temperatures,”Catal. Lett.,70, 93 (2000).

    Article  CAS  Google Scholar 

  • Kolmakov, A. and Goodman, D.W., “Scanning Tunneling Microscopy of Gold Clusters on TiO2 (110): CO Oxidation at Elevated Pressures,”Surf. Sci.,490, L 597-L601 (2001).

    Article  CAS  Google Scholar 

  • Kresse, G. and Hafner, J., “Ab-initio Molecular-dynamics for Liquidmetals,”Phys. Rev. B,47, RC558 (1993)

    Article  Google Scholar 

  • Kresse, G. and Furthmüller, J., “Efficient Iterative Schemes for ab initio Total-energy Calculations using a Plane-wave Basis Set,”Phys. Rev. B,54, 11169 (1996).

    Article  CAS  Google Scholar 

  • Kresse, G. and Hafner, J., “Norm-conserving and Ultra-soft Pseudopotentials First-row and Transition Elements,”J. Phys.: Condens. Matter,6, 8245 (1994).

    Article  CAS  Google Scholar 

  • Lindan, P. J. D., Harrison, N. M., Gillan, M. J. and White, J.A., “Firstprinciples Spin-polarized Calculations on the Reduced and Reconstructed TiO2 (110) Surface,”Phys. Rev. B,55, 15919 (1997).

    Article  CAS  Google Scholar 

  • Lopez, N. and NØrskov, J.K., “Theoretical Study of the Au/TiO2 (110) Interface,”Surf. Sci.,515, 175 (2002).

    Article  CAS  Google Scholar 

  • Mattsson, A. E. and Jennison, D. R., “Computing Accurate Surface Energies and the Importance of Electron Self-energy in Metal/metaloxide Adhesion,”Surf. Sci.,520, L611-L618 (2002).

    Article  CAS  Google Scholar 

  • Matveev, A.V., Neyman, K. M., Yudanov, I.V. and Rosch, N., “Adsorption of Transition Metal Atoms on Oxygen Vacancies and Regular Sites of the MgO(001) Surface,”Surf. Sci.,426, 123 (1999).

    Article  CAS  Google Scholar 

  • Murray, P.W., Condon, N.G. and Thornton, G., “Effect of Stoichiometry on the Structure of TiO2 (110),”Phys. Rev. B,51, 10989 (1995).

    Article  CAS  Google Scholar 

  • Muscat, J., Harrison, N. M. and Thorton, G., “First-principles Study of Potassium Adsorption on TiO2 Surfaces,”Phys. Rev. B,59, 2320 (1999).

    Article  CAS  Google Scholar 

  • Ng, K.-O. and Vanderbilt, D., “Structure and Apparent Topography of TiO2 (110) Surfaces,”Phys. Rev. B,56, 10544 (1997).

    Article  CAS  Google Scholar 

  • Onishi, H. and Iwasawa, Y., “Reconstruction of TiO2 (110) Surface-STM Study with Atomic Scale Resolution,”Surf. Sci.,313, L783-L789 (1994).

    Article  CAS  Google Scholar 

  • Pang, C. L., Haycock, S.A., Raza, H., Murray, P.W., Thornton, G., Gulesren, O., James, R. and Bullett, D.W., “Added Row Model of TiO2 (110) 1×2,”Phys. Rev. B,58, 1586 (1998).

    Article  CAS  Google Scholar 

  • Perdew, J. and Zunger, A., “Self Interaction Correction to Density-functional Approximations for Many-electron Systems,”Phys. Rev. B,23, 5048 (1981).

    Article  CAS  Google Scholar 

  • Perdew, J., Chevary, J., Vosko, S., Jackson, K., Pederson, M., Singh, D. and Fiolhais, C., “Atoms, Molecules, Solids, and Surfaces-Applications of the Generalized Gradient Approximation for Exchange and Correlation,”Phys. Rev. B,46, 6671 (1992).

    Article  CAS  Google Scholar 

  • Reinhardt, P. and Hess, B. A., “Electronic and Geometrical Structure of Rutile Surfaces,”Phys. Rev. B,50, 12015 (1994).

    Article  CAS  Google Scholar 

  • Santra, A. K. and Goodman, D.W., “Oxide-supported Metal Clusters: Models for Heterogeneous Catalysts,”J. Phys.: Condens. Matter,14, R31-R62 (2002).

    Google Scholar 

  • Schaub, R., Wahlström, E., RØnnau, A., LÆgsgaard, E., Stensgaad, I. and Besenbacher, F., “Oxygen-mediated Diffusion of Oxygen Vacancies on the TiO2 (110) Surface,”Science,299, 377 (2003).

    Article  CAS  Google Scholar 

  • Siegel, D. J., Hector, L.G. and Adams, J. B., “Adhesion, Atomic Structure, and Bonding at the Al (111)/α-Al2O3 (0001) Interface: A First Principles Study,”Phys. Rev. B,65, 85415 (2002).

    Article  Google Scholar 

  • ThiÊn-Nga, L. and Paxon, A. T., “Electronic Structure of 5d Transition Metals Adsorbed on the Stoichiometric (110) Rutile Surface,”Phys. Rev. B,58, 13233 (1998).

    Article  Google Scholar 

  • Valden, M., Lai, X. and Goodman, D.W., “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,”Science,281, 1647 (1998).

    Article  CAS  Google Scholar 

  • Vanderbilt, D., “Soft Slef-consistent Pseudopotentials in a Generalized Eigenvalue Formalism,”Phys. Rev. B,41, 7892 (1990).

    Article  Google Scholar 

  • Verdozzi, C., Jennison, D. R., Schultz, P.A. and Sears, M. P., “Sapphire (0001) Surface, Clean and with d-Metal Overlayers,”Phys. Rev. Lett.,82, 799 (1999).

    Article  CAS  Google Scholar 

  • Vijay, A., Mills, G. and Meitu, H., “Adsorption of Gold on Stoichiometric and Reduced Rutile TiO2 (110) Surfaces,”J. Chem. Phys.,118, 6536 (2003).

    Article  CAS  Google Scholar 

  • Vinet, P., Ferrante, J., Smith, J. R. and Hose, J.H., “A Universal Equation of State for Solids,”J. Phys.: Condens. Matter,19, L467-L473 (1986).

    CAS  Google Scholar 

  • Wahlström, E., Lopez, N., Schaub, R., Thostrup, P., RØnnau, A., Africh, C., LÆgsgaard, E., NØrskov, J.K. and Besenbacher, F., “Bonding of Gold Nanoclusters o Oxygen Vacancies on Rutile TiO2 (110),”Phys. Rev. Lett.,90, 26101 (2003).

    Article  Google Scholar 

  • Wang, Y. and Hwang, G. S., “Adsorption of Au Atoms on Stoichiometric and Reduced TiO2 (110) Rutile Surfaces: A First Principles Study,”Surf. Sci.,542, 72 (2003).

    Article  CAS  Google Scholar 

  • Yang, Z., Wu, R. and Goodman, D.W., “First-principles Study of the Adsorption of CO on TiO2(110),”Phys. Rev. B,61, 14066 (2000).

    Article  CAS  Google Scholar 

  • Zhou, J., Kang, Y. C. and Chen, D.A., “Controlling Island Size Distributions: A Comparison of Nickel and Copper Growth on TiO2 (110),”Surf. Sci.,537, L429-L434 (2003).

    Article  CAS  Google Scholar 

  • Zhukovskii, Y. F., Kotomin, E. A., Jacobs, P.W. M. and Stoneham, A.M., “Ab Initio Modeling of Metal Adhesion on Oxide Surfaces with Defects,”Phys. Rev. Lett.,84, 1256 (2000).

    Article  CAS  Google Scholar 

  • “Electronic Factors Determining the Reactivity of Metal Surfaces,”Surf. Sci.,343, 211 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyeong S. Hwang.

Additional information

°This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillay, D., Wang, Y. & Hwang, G.S. A comparative theoretical study of Au, Ag and Cu adsorption on TiO2 (110) rutile surfaces. Korean J. Chem. Eng. 21, 537–547 (2004). https://doi.org/10.1007/BF02705445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705445

Key words

Navigation