Skip to main content
Log in

Internal/External use of dendrimer in catalysis

  • Review
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Dendrimers, well-defined hyper-branched macromolecules with characteristic globular structures, have inspired chemists and chemical engineers to develop new materials and several applications have been explored. The dendritic molecule has emerged as an attractive material in the field of catalysis and various dendrimer catalysts have been applied not only to catalytic reactions but also to non-catalytic ones such as nanoscale reactor systems. This article presents a review of research work on the dendrimer-based catalysis involving the rational design of homogeneous or heterogeneous chiral dendrimer catalysts for enantioselective reactions and the synthesis of catalytically active bimetallic nanoparticles in the presence of dendrimer as a template.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, S., Laspéras, M., Galarneau, A., Desplantier-Giscard, D. and Brunel, D., “Best Design of Heterogenized ?-Aminoalcohols for Improvement of Enantioselective Addition of Diethylzinc to Benzaldehyde,”Chem. Commun., 1773 (2000).

  • Archut, A. and Vögtle, F., “Handbook of Nanostructured Materials and Nanotechnology 5,” Nalwa, H. S., Ed., Academic Press, San Diego (2000).

    Google Scholar 

  • Astruc, D. and Chardac, F., “Dendritic Catalysts and Dendrimers in Catalysis,”Chem. Rev.,101, 2991 (2001).

    Article  CAS  Google Scholar 

  • Bae, S. J., Kim, S.-W., Hyeon, T. and Kim, B. M., “New Chiral Heterogeneous Catalysts Based on Mesoporous Silica: Asymmetric Diethylzinc Addition to Benzaldehyde,”Chem. Commun., 31 (2000).

  • Balogh, L. and Tomalia, D. A., “Poly(amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters,”J. Am. Chem. Soc.,120, 7355 (1998).

    Article  CAS  Google Scholar 

  • Bellocq, N., Abramson, S., Laspéras, M., Brunel, D. and Moreau, P., “Factors Affecting the Efficiency of Hybrid Chiral Mesoporous Silicas used as Heterogeneous Inorganic-Organic Catalysts in the Enantioselective Alkylation of Benzaldehyde,”Tetrahedron: Asymmetry,10, 3229 (1999).

    Article  CAS  Google Scholar 

  • Bolm, C., Derrien, N. and Seger, A., “Hyperbranched Macromolecules in Asymmetric Catalysis,”Synlett, 387 (1996).

  • Bolm, C., Zehnder, M. and Bur, D., “Optically-Active Bipyridines in Asymmetric Catalysis,”Angew. Chem. Int. Ed.,29, 205 (1990).

    Article  Google Scholar 

  • Bosman, W., Janssen, H.M. and Meijer, E.W., “About Dendrimers: Structure, Physical Properties, and Applications,”Chem. Rev.,99, 1665 (1999.

    Article  CAS  Google Scholar 

  • Bourque, S. C., Alper, H., Manzer, L. E. and Arya, P., “Hydroformylation Hydroformylation Reactions Using Recyclable Rhodium-Complexed Dendrimers on Silica,”J. Am. Chem. Soc.,122, 956 (2000).

    Article  CAS  Google Scholar 

  • Bourque, S. C., Maltais, F., Xiao, W.-J., Tardif, O., Alper, H., Arya, P. and Manzer, L. E., “Hydroformylation Reactions with Rhodium-Complexed Dendrimers on Silica,”J. Am. Chem. Soc.,121, 3035 (1999).

    Article  CAS  Google Scholar 

  • Brunel, D., “Functionalized Micelle-Templated Silicas (MTS) and Their Use as Catalysts for Fine Chemicals,”Microporous Mesoporous Mater.,27, 329 (1999).

    Article  CAS  Google Scholar 

  • Chung, Y.-M. and Rhee, H.-K., “Dendritic Chiral Auxiliaries on Silica: A New Heterogeneous Catalyst for Enantioselective Addition of Diethylzinc to Benzaldehyde,”Chem. Commun., 238 (2002a).

  • Chung, Y.-M. and Rhee, H.-K., “Design of Silica-Supported Dendritic Chiral Catalysts for the Improvement of Enantioselective Addition of Diethylzinc to Benzaldehyde,”Catal. Lett.,82(3–4), 249 (2002b).

    Article  CAS  Google Scholar 

  • Chung, Y.-M. and Rhee, H.-K., “Pt-Pd Bimetallic Nanoparticles Encapsulated in Dendrimer Nanoreactor,”Catal. Lett.,85(3–4), 159 (2003a).

    Article  CAS  Google Scholar 

  • Chung, Y.-M. and Rhee, H.-K., “Dendrimer-Templated Ag-Pd Bimetallic Nanoparticles,”J. Colloid Interface Sci., (2003b)submitted.

  • Chung, Y.-M. and Rhee, H.-K., “Partial Hydrogenation of 1, 3-Cyclooctadiene Using Dendrimer-Encapsulated Pd-Rh Bimetallic Nanoparticles,”J. Mol. Catal. A: Chemical, (2003c)in press.

  • Chung, Y.-M. and Rhee, H.-K., “Silica Supported Dendritic Chiral Auxiliaries for Asymmetric Synthesis,”C. R. Chimie, (2003d)submitted.

  • Copéret, C., Chabanas, M., Saint-Arroman, R. P. and Basset, J.-M., “Homogeneous and Heterogeneous Catalysis: Bridging the Gap through Surface Organometallic Chemistry,”Angew. Chem. Int. Ed.,42(2), 156 (2003).

    Article  Google Scholar 

  • Cotton, A. and Wilkinson, G., eds., “Advanced Inorganic Chemistry,” 5th ed., John Wiley & Sons, New York (1988).

    Google Scholar 

  • Creighton J.A. and Eadon, D.G., “Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements,”J. Chem. Soc., Faraday Trans.,87(24), 3881 (1991).

    Article  CAS  Google Scholar 

  • Crooks, R.M., Lemon III, B. L., Sun, L., Yeung, L.K. and Zhao, M., “Dendrimer-Encapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications,”Top. Curr. Chem.,212, 81 (2001a).

    CAS  Google Scholar 

  • Crooks, R. M., Zhao, M., Sun, L., Chechik, V. and Yeung, L.K., “Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis,”Acc. Chem. Res.,34(3), 181 (2001b).

    Article  CAS  Google Scholar 

  • De Vos, D. E., Vankelecom, I. F. J. and Jacobs, P.A., Eds., “Chiral Catalyst Immobilization and Recycling,” Wiley-VCH, Weinheim (2000).

    Google Scholar 

  • Esumi, K., Suzuki, A., Aihara, N., Usui, K. and Torigoe, K., “Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer,”Langmuir,14, 3157 (1998).

    Article  CAS  Google Scholar 

  • Esumi, K., Suzuki, A., Yamahira, A. and Torigoe, K., “Role of Poly(amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver,”Langmuir,16, 2604 (2000).

    Article  CAS  Google Scholar 

  • Fendler, J.H., “Colloid Chemical Approach to Nanotechnology,”Korean J. Chem. Eng.,18(1), 1 (2001).

    Article  CAS  Google Scholar 

  • Fischer, M. and Vögtle, F., “Dendrimers: From Design to Application - A Progressive Report,”Angew. Chem. Int. Ed.,38, 885 (1999).

    CAS  Google Scholar 

  • Floriano, P. N., Noble, IV, C.O., Schoonmaker, J.M., Poliakoff, E.D. and McCarley, R. L., “Cu(0) Nanoclusters Derived from Poly(propylene imine) Dendrimer Complexes of Cu(II),”J. Am. Chem. Soc.,123, 10545 (2001).

    Article  CAS  Google Scholar 

  • Gerloch, M. and Constable, E. C., “Transition Metal Chemistry: The Valence Schell in d-Block Chemistry,” VCH, Weinheim (1994).

    Google Scholar 

  • Gröhn, F., Bauer, B. J., Akpalu, Y. A., Jackson, C. L. and Amis, E. J., “Dendrimer Templates for the Formation of Gold Nanoclusters,”Macromolecules,33, 6042 (2000).

    Article  CAS  Google Scholar 

  • Hawker, C. and Fréchet, J.M. J., “Preparation of Polymers with Controlled Molecular Architecture. A New Convergent Approach to Dendritic Macromolecules,”J. Am. Chem. Soc.,112(2), 7638 (1990).

    Article  CAS  Google Scholar 

  • Hechet, S. and Fréchet, J.M. J., “Dendritic Encapsulation of Function: Applying Natures Site Isolation Principle from Biomimetics to Materials Science,”Angew. Chem. Int. Ed.,40(1), 74 (2001).

    Article  Google Scholar 

  • Hu, Q.-S., Pugh, V., Sabat, M. and Pu, L., “Structurally Rigid and Optically Active Dendrimers,”J. Org. Chem.,64, 7528 (1999).

    Article  CAS  Google Scholar 

  • Hu, Q.-S., Sun, C. and Monaghan, C. E., “Optically Active Dendronized Polymers as a New Type of Macromolecular Chiral Catalysts for Asymmetric Catalysis,”Tetrahedron Lett.,43, 927 (2002).

    Article  CAS  Google Scholar 

  • Jannes, G. and Dubois, V., Eds., “Chiral Reactions in Heterogeneous Catalysis,” Plenum Press, New York (1993).

    Google Scholar 

  • Jansen, J. F.G.A., Peerlings, H.W. L., de B.-V. den Berg, E. M.M. and Meijer, E.W., “Optical Activity of Chiral Dendritic Surfaces,”Angew. Chem. Int. Ed.,34(11), 1206 (1995).

    Article  CAS  Google Scholar 

  • King, A. S.H. and Twyman, L. J., “Heterogeneous and Solid Supported Dendrimer Catalysts,”J. Chem., Soc. Perkin Trans. 1, 2209 (2002).

    Article  CAS  Google Scholar 

  • Knapen, J.W. J., van der Made, A.W., De Wilde, J. C., van Leeuwen, P.W.M.N., Wijkens, P., Grove, D.M. and van Koten, G., “Homogeneous Catalysts Based on Silane Dendrimers Functionalized with Arylnickel(II) Complexes,”Nature,372, 659 (1994).

    Article  CAS  Google Scholar 

  • Kreiter, R., Klej, A.W., Gebbink, R. J.M.K. and van Koten, G., “Dendritic Catalysts,”Top. Curr. Chem.,217, 163 (2001).

    CAS  Google Scholar 

  • Lewis, L.N., “Chemical Catalysis by Colloids and Clusters,”Chem. Rev.,93, 2693 (1993).

    Article  CAS  Google Scholar 

  • Matthews, O. A., Shipway, A. N. and Stoddart, J. F., “Dendrimers-Branching out from Curiosities into New Technologies,”Prog. Polym. Sci.,23, 1 (1998).

    Article  CAS  Google Scholar 

  • Murota, M., Sato, S. and Tsubokawa, N., “Scale-up Synthesis of Hyperbranched Poly(amidoamine)-grafted Ultrafine Silica Using Dendrimer Synthesis Methodology in Solvent-free Dry-system,”Polym. Adv. Technol.,13, 144 (2002).

    Article  CAS  Google Scholar 

  • Newkome, G. R., Ed., “Advances in Dendritic Macromolecules,” JAI Press Inc., Greenwich (1994).

    Google Scholar 

  • Newkome, G. R., Moorefield, C.N. and Vögtle, F., “Dendritic Molecules: Concepts, Synthesis, Perspectives,” VCH, Weinheim (1996).

    Google Scholar 

  • Niu, Y., Yeung, L.K. and Crooks, R. M., “Size-Selective Hydrogenation of Olefins by Dendrimer-Encapsulated Palladium Nanoparticles,”J. Am Chem. Soc.,123, 6840 (2001).

    Article  CAS  Google Scholar 

  • Oosterom, G. E., Reek, N. J. H., Kramer, P. C. J. and van Leeuwen, P.W.N. M., “Transition Metal Catalysis Using Functionalized Dendrimers,”Angew. Chem. Int. Ed.,40(10), 1828 (2001).

    Article  CAS  Google Scholar 

  • Panster, P. and Wieland, S., “Applied Homogeneous Catalysis with Organometallic Compounds 2,” Cornils, B. and Herrmann, W.A., Eds., Wiley-VCH, Weinheim (1996).

    Google Scholar 

  • Peerlings, H.W. I., Jansen, J. F.G.A., de B.-V. den Berg, E.M. M. and Meijer, E.W., “Optical Activity of Dendrimers with Chiral End Groups,”Polym. Mater. Sci. Eng.,73, 342 (1995).

    CAS  Google Scholar 

  • Peerlings, H.W. I. and Meijer, E.W., “Chirality in Dendritic Architectures,”Chem. Eur. J.,3(10), 1563 (1997).

    Article  CAS  Google Scholar 

  • Rheiner, P. B. and Seebach, D., “Dendritic TADDOLs: Synthesis, Characterization and Use in the Catalytic Enantioselective Addition of Et2Zn to Benzaldehyde,”Chem. Eur. J.,5(11), 3221 (1999).

    Article  CAS  Google Scholar 

  • Sanders-Hovens, M. S. T.H., Jansen, J. F.G.A., Vekemans, J.A. J. M. and Meijer, E.W., “Dendrimers as Chiral Catalysts?: A Critical Note,”Polym. Mater. Sci. Eng.,73, 338 (1995).

    CAS  Google Scholar 

  • Sato, I., Hosoi, K., Kodaka, R. and Soai, K., “Asymmetric Synthesis of N-(Diphenylphosphinyl)amines Promoted by Chiral Carbosilane Dendritic Ligands in the Enantioselective Addition of Dialkylzinc Compounds to N-(Diphenylphosphinyl)imines,”Eur. J. Org. Chem., 3115 (2002a).

  • Sato, I., Kodaka, R., Hosoi, K. and Soai, K., “Highly Enantioselective Addition of Dialkylzincs to Aldehydes Using Dendritic Chiral Catalysts with Flexible Carbosilane Backbones,”Tetrahedron: Asymmetry,13, 805 (2002b).

    Article  CAS  Google Scholar 

  • Sato, I., Kodata, R., Shibata, T., Hirokawa, Y., Shirai, N., Ohtake, K. and Soai, K., “Highly Enantioselective Addition of Diethylzinc to NDiphenylphosphinylimines Using Dendritic Chiral Ligands with Hydrocarbon Backbones,”Tetrahedron: Asymmetry,11, 2271 (2000a).

    Article  CAS  Google Scholar 

  • Sato, I., Shibata, T., Ohtake, K., Kodaka, R., Hirokawa, Y., Shirai, N. and Soai, K., “Synthesis of Chiral Dendrimers with a Hydrocarbon Backbone and Application to the Catalytic Enantioselective Addition of Dialkylzincs to Aldehydes,”Tetrahedron Lett.,41, 3123 (2000b).

    Article  CAS  Google Scholar 

  • Schmid, G., “Cluster and Colloids: From Theory to Applications,” VCH, New York (1994).

    Google Scholar 

  • Scott, R.W., Datye, A.K. and Crooks, R.M., “Bimetallic Palladium-Platinum Dendrimer-Encapsulated Catalysts,”J. Am. Chem. Soc.,125, 3708 (2003).

    Article  CAS  Google Scholar 

  • Seebach, D., Beck, A. K. and Heckel, A., “TADDOLs, Their Derivatives, and TADDOL Analogues: Versatile Chiral Auxiliaries,”Angew. Chem. Int. Ed.,40, 93 (2001).

    Google Scholar 

  • Seebach, D., Marti, R. E. and Hintermann, T., “Dendritic Styryl TADDOLs as Novel Polymer Cross-Linkers: First Application in an Enantioselective Et2Zn Addition Mediated by a Polymer-Incorporated Titanate,”Helv. Chim. Acta,79, 2027 (1997).

    Google Scholar 

  • Seebach, D., Marti, R.E. and Hintermann, T., “Polymer- and Dendrimer-Bound Ti-TADDOLates in Catalytic (and Stoichiometric) Enantioselective Reactions: Are Pentacoordinate Cationic Ti Complexes the Catalytically Active Species?”Helv. Chim. Acta,79, 1710 (1996).

    Article  CAS  Google Scholar 

  • Seebach, D., Rheiner, P. B., Greiveldinger, G., Butz, T. and Sellner, H., “Chiral Dendrimers,”Top. Curr. Chem.,197, 125 (1998).

    Article  CAS  Google Scholar 

  • Sellner, H., Faber, C., Rheiner, P. B. and Seebach, D., “Immobilization of BINOL by Cross-Linking Copolymerization of Styryl Derivatives with Styrene, and Applications in Enantioselective Ti and Al Lewis Acid Mediated Addition of Et2Zn and Me3SiCN to Aldehydes and of Diphenyl Nitrone to Enol Ethers,”Chem. Eur. J.,6(20), 3692 (2000).

    Article  CAS  Google Scholar 

  • Sellner, H., Rheiner, P. B. and Seebach, D., “Preparation of Polystyrene Beads with Dendritically Embedded TADDOL and Use in Enantioselective Lewis Acid Catalysis,”Helv. Chim. Acta,85, 352 (2002).

    Article  CAS  Google Scholar 

  • Sellner, H. and Seebach, D., “Dendritically Cross-Linking Chiral Ligands: High Stability of a Polystyrene-Bound Ti-TADDOLate Catalyst with Diffusion Control,”Angew. Chem. Int. Ed.,38(13/14), 1918 (1999).

    Article  CAS  Google Scholar 

  • Sinfelt, J.H., “Structures of Bimetallic Clusters,”Acc. Chem. Res.,20, 134 (1987).

    Article  CAS  Google Scholar 

  • Soai, K. and Niwa, S., “Enantioselective Addition of Organozinc Reagents to Aldehydes,”Chem. Rev.,92, 833 (1992).

    Article  CAS  Google Scholar 

  • Soai, K., Watanabe, M. and Yamamoto, A., “Enantioselective Addition of Dialkylzincs to Aldehydes Using Heterogeneous Chiral Catalysts Immobilized on Alumina and Silica Gel,”J. Org. Chem.,55, 4832 (1990).

    Article  CAS  Google Scholar 

  • Suzuki, T., Hirokawa, Y., Ohtake, K., Shibata, T. and Soai, K., “Chiral Amino Alcohols Bound to Diimines, Diamines and Dendrimers as Chiral Ligands for the Enantioselective Ethylation of N-Diphenylphosphinylimines,”Tetrahedron: Asymmetry,8(24), 4033 (1997).

    Article  CAS  Google Scholar 

  • Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J. and Smith, P., “A New Class of Polymers: Starburst-Dendritic Macromolecules,”Polym. J.,17(1), 117 (1985).

    Article  CAS  Google Scholar 

  • Tomalia, D. A. and Durst, H. D., “Genealogically Directed Synthesis - Starburst/Cascade Dendrimers and Hyperbranched Structures,”Top. Curr. Chem.,165, 193 (1993).

    CAS  Google Scholar 

  • Tomalia, D.A. and Dvornic, P. R., “What Promise for Dendrimers,”Nature,372, 617 (1994).

    Article  CAS  Google Scholar 

  • Torigoe, K. and Esumi, K., “Preparation of Bimetallic Ag-Pd Colloids from Silver(I) Bis(oxalate)palladate(II),”Langmuir,9, 1664 (1993).

    Article  CAS  Google Scholar 

  • Toshima, N., Kushihashi, K., Yonezawa, T. and Hirai, H., “Colloidal Dispersions of Palladium-Platinum Bimetallic Clusters Protected by Polymers. Preparation and Application to Catalysis,”Chem. Lett., 1769 (1989).

  • Toshima, N., Yonezawa, T. and Kushihashi, K., “Polymer-Protected Palladium-Platinum Bimetallic Clusters: Preparation, Catalytic Properties and Structural Considerations,”J. Chem. Soc. Faraday Trans.,89(14), 2537 (1993).

    Article  CAS  Google Scholar 

  • Tsubokawa, N., Ichioka, H., Satoh, T., Hayashi, S. and Fujiki, K., “Grafting of Dendrimer-like Highly Branched Polymer onto Ultrafine Silica Surface,”React. Funct. Polym.,37, 75 (1998).

    Article  CAS  Google Scholar 

  • Tsubokawa, N. and Takayama, T., “Surface Modification of Chitosan Powder by Grafting of Dendrimer-like Hyperbranched Polymer onto the Surface,”React. Funct. Polym.,43, 341 (2000).

    Article  CAS  Google Scholar 

  • Turro, N., Barton, J.K. and Tomalia, D.A., “Molecular Recognition and Chemistry in Restricted Reaction Spaces. Photophysics and Photoinduced Electron Transfer on the Surfaces of Micelles, Dendrimers, and DNA,”Acc. Chem. Res.,24, 332 (1991).

    Article  CAS  Google Scholar 

  • Twyman, L. J., King, A. S.H. and Martin, I. K., “Catalysis inside Dendrimers,”Chem. Soc. Rev.,31, 69 (2002).

    Article  CAS  Google Scholar 

  • van Heebeek, R., Kamer, P. C. J., van Leeuwen, P.W. N.M. and Reek, J.N.H., “Dendrimers as Support for Recoverable Catalysts and Reagents,”Chem. Rev.,102, 3717 (2002).

    Article  CAS  Google Scholar 

  • van Koten, G. and Jastrzebski, J. T. B.H., “Periphery-Functionalized Organometallic Dendrimers for Homogeneous Catalysis,”J. Mol. Catal. A: Chemical,146, 317 (1999).

    Article  Google Scholar 

  • Watanabe, S. and Regen, S. L., “Dendrimers as Building Blocks for Multilayer Construction,”J. Am. Chem. Soc.,116, 8855 (1994).

    Article  CAS  Google Scholar 

  • Yoon, K. J., Kang, H.K. and Yie, J. E., “Synergism and Kinetics in CO Oxidation over Palladium-Rhodium Bimetallic Catalysts,”Korean J. Chem. Eng.,14(5), 399 (1997).

    Article  CAS  Google Scholar 

  • Yoshikawa, S., Satoh, T. and Tsubokawa, N., “Post-grafting of Polymer with Controlled Molecular Weight onto Silica Surface by Termination of Living Polymer Cation with Terminal Amino Groups of Dendrimer-grafted Ultrafine Silica,”Colloids Surf. A,153, 395 (1999).

    Article  CAS  Google Scholar 

  • Zeng, F. and Zimmerman, S. C., “Dendrimers in Supramolecular chemistry: From Molecular Recognition to Self-Assembly,”Chem. Rev.,97, 1681 (1997).

    Article  CAS  Google Scholar 

  • Zhao, M. and Crooks, R. M., “Dendrimer-Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis,”Adv. Mater.,11(3), 217 (1999a).

    Article  CAS  Google Scholar 

  • Zhao, M. and Crooks, R. M., “Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles,”Angew. Chem. Int. Ed.,38(3), 364 (1999b).

    Article  CAS  Google Scholar 

  • Zhao, M., Sun, L. and Crooks, R. M., “Preparation of Cu Nanoclusters within Dendrimer Templates,”J. Am. Chem. Soc.,120, 4877 (1998).

    Article  CAS  Google Scholar 

  • Zheng, J., Stevenson, M. S., Hikida, R. S. and Patten, P.G.V., “Influence of pH on Dendrimer-Protected Nanoparticles,”J. Phys. Chem. B,106, 1252, (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Min Chung.

Additional information

This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, YM., Rhee, HK. Internal/External use of dendrimer in catalysis. Korean J. Chem. Eng. 21, 81–97 (2004). https://doi.org/10.1007/BF02705384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705384

Key words

Navigation