Skip to main content
Log in

Adaptation to low temperature and regulation of gene expression in antarctic psychrotrophic bacteria

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Exposure to extremes of temperatures cause stresses which are sometimes lethal to living cells. Microorganisms in nature, however, are extremely diverse and some of them can live happily in the freezing cold of Antarctica. Among the cold adapted psychrotrophs and psychrophiles, the psychrotrophic bacteria are the predominant forms in the continental Antarctica. In spite of living in permanently cold area, the antarctic bacteria exhibit, similar to mesophiles, ‘cold-shock’ response albeit at a much lower temperatures, e.g., at 0–5°C. However, because of permanently cold condition and the long isolation of the continent, the microorganisms have acquired new adaptive features in the membranes, enzymes and macromolecular synthesis. Only recently these adaptive modifications are coming into light due to the efforts of various laboratories around the world. However, a lot more is known about adaptive response to low temperature in mesophilic bacteria than in antarctic bacteria. Combined knowledge from the two systems is providing useful clues to the understanding of basic biology of low temperature growing organisms. This article will provide an overview of this area of research with a special reference to sensing of temperature and regulation of gene expression at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajari N, Feller G, Gerday C and Haser R 1996 Crystalization and preliminary X-ray diffraction studies of α-amylase from the antarctic psychrophileAlteromonas haloplanctis A23;Prot. Sci. 5 2128–2129

    Article  CAS  Google Scholar 

  • Adler E and Knowles J 1995 A thermolabile isomerase from the psychrophileVibrio sp. strain ANT-300;Arch. Biochem. Biophys. 321 137–139

    Article  CAS  PubMed  Google Scholar 

  • Araki T 1991 Changes in rates of synthesis of individual proteins in a psychrotrophic bacterium after a shift in temperature;Can. J. Microbiol. 37 840–847

    Article  CAS  PubMed  Google Scholar 

  • Bobier S R, Ferroni G D and Innis W E 1972 Protein synthesis by the psychrophilesBacillus psychrophilus andBacillus insolitus;Can. J. Microbiol. 18 1837–1843

    Article  CAS  PubMed  Google Scholar 

  • Bowman J P, McCammon S A, Nichols D S, Skerrat J H, Rea S M, Nichols P D and McMeekin T A 1997Schewanella gelidimarina sp. nov. andSchewanella frigidimarina sp. nov., novel antarctic species with ability to produce eicosapentaenoic acid (20∶5 ε3) and grow anaerobically by dissimilatory Fe (III) reduction;Int. J. Syst. Bacteriol. 47 1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Brandi A, Pietroni P, Gualerzi C O and Pon C L 1996 Post transcriptional regulation ofcspA expression inEscherichia coli.;Mol. Microbiol. 19 231–240

    Article  CAS  PubMed  Google Scholar 

  • Broeze R J, Solomon C J and Pope D H 1978 Effects of low temperature onin vivo andin vitro protein synthesis inEscherichia coli andPseudomonas fluorescence;J. Bacteriol. 134 861–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay, M K, Uma Devi K, Gopisankar Y and Shivaji S 1995 Thermolabile alkaline phosphatase fromSphingobacterium antarcticus, a psychrotrophic bacterium from Antarctica;Polar Biol. 15 215–219

    Article  Google Scholar 

  • Chauhan S and Shivaji S 1994 Growth and pigmentation inSphingobacterium antarcticus, a psychrotrophic bacterium from Antarctica;Polar Biol. 14 31–36

    Article  Google Scholar 

  • Chi E and Bartlett D H 1995 An rpoE-like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep sea bacteriumPhotobacterium sp strain SS9;Mol. Microbiol. 17 713–726

    Article  CAS  PubMed  Google Scholar 

  • Cossins A N 1994 Homeoviscous adaptation of biological membranes and its functional significance; inTemperature adaptation of biological membrane (ed.) A R Cossin (London: Portland Press) pp 63–76

    Google Scholar 

  • Das H K and Goldstein A 1968 Limited capacity for protein synthesis at zero degree centigrade inEscherichia coli;J. Mol. Biol. 31 209–226

    Article  CAS  PubMed  Google Scholar 

  • Davail S, Feller G, Narinx E and Gerday C 1995 Cold adaptation of proteins. Purification, characterization and sequence of the heat labile subtilisin from the antarctic psychrophileBacillus TA 47;J. Biol. Chem. 269 17448–17453

    Google Scholar 

  • Dersch P, Kneip S and Bremmer E 1994 The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation ofEscherichia coli K-12 to a cold environment;Mol. Gen. Genet. 245 255–259

    Article  CAS  PubMed  Google Scholar 

  • Donovan W P and Kusher S R 1986 Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turn over inEscherichia coli K-12;Proc. Natl. Acad. Sci. USA 83 120–124

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Jiang W, Bae W and Inouye M 1997 Promoter-independent cold shock induction ofcspA and its derepression at 37°C by mRNA stabilization;Mol. Microbiol. 23 355–364

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Narinx E, Arpigny J L, Aittaleb M, Baise E, Genicot S and Gerday C 1996 Enzymes from psychrophilic organisms;FEMS Microbiol. Rev. 18 189–202

    Article  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny J L, Zekhnini Z, Swings J and Gerday C 1994a Temperature dependent of growth, enzyme secretion and activity of psychrophilic antarctic bacteria;Appl. Microbiol. Biotechnol. 41 477–479

    Article  CAS  Google Scholar 

  • Feller G, Payan F, Theys F, Qian M, Haser R and Gerday C 1994b Stability and structural analysis of α-amylase from the antarctic psychrophileAlternomonas haloplanctis A23;Eur. J. Biochem. 222 441–447

    Article  CAS  PubMed  Google Scholar 

  • Fessenmaier M, Frank R, Retey J and Schubert C 1991 Cloning and sequencing of the urocanase gene (hutU) from thePseudomonas putida;FEBS Lett. 286 55–57

    Article  CAS  PubMed  Google Scholar 

  • Friedman D I, Olson E R, Georgopoulos C, Tilly K, Herskowitz I and Banuett F 1984 Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda;Microbiol. Rev. 48 299–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerike U, Danson M J, Russell N J and Hough D W 1997 Sequencing and expression of the gene encoding a cold-active citrate synthase from an antarctic bacterium strain DS2-3R;Eur. J. Biochem. 248 49–57

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg D, Azar I and Oppenheim A B 1996 Differential mRNA stability of thecspA gene in the cold shock response ofEscherichia coli;Mol. Microbiol. 19 241–248

    Article  CAS  PubMed  Google Scholar 

  • Goldstein E and Drilca K 1984 Regulation of bacterial DNA supercoiling: plasmid linking members vary with growth temperature;Proc. Natl. Acad. Sci. USA 81 4046–4050

    Article  CAS  PubMed  Google Scholar 

  • Goldstein J, Pollitt N S and Inouye M I 1990 Major cold shock protein ofEschierchia coli;Proc. Natl. Acad. Sci. USA 87 283–287

    Article  CAS  PubMed  Google Scholar 

  • Gounot A 1991 Bacterial life at low temperature: Physiological aspects and biotechnological implications;J. Appl. Bacteriol. 71 386–397

    Article  CAS  PubMed  Google Scholar 

  • Graumann P and Marahiel M A 1996 Some like it cold: response of microorganisms to cold shock;Arch. Microbiol. 166 293–300

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Schroder K, Schmid K and Marahiel M A 1996 Cold shock stress-induced proteins inBacillus subtilis;J. Bacteriol. 178 4611–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamoto T, Takata N, Kudo T and Horokoshi K 1995 Characteristic presence of polyunsaturated fatty acid in marine psychrophilicVibrios;FEMS Microbiol. Lett. 129 51–56

    Article  CAS  Google Scholar 

  • Hashimoto W, Suzuki H, Yamamoto K and Kumagai H 1997 Analysis of low temperature inducible mechanism of γ-glutamyl transpeptidase ofEscherichia coli K-12;Biosci. Biotech. Biochem. 61 34–39

    Article  CAS  Google Scholar 

  • Hebraud M, Dubois E, Potier P and Labadie J 1994 Effect of growth temperatures on the protein levels in a psychrotrophic bacterium,Pseudomonas fragi;J. Bacteriol. 176 4017–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrick J P and Hartl F U 1993 Molecular chaperone functions of heat-shock proteins;Annu. Rev. Biochem. 62 349–384

    Article  CAS  PubMed  Google Scholar 

  • Herbert R A 1986 The ecology and physiology of psychrophilic microorganisms; inMicrobes in extreme environments (eds) R A Herbert and G A Cod (London: Academic Press) pp 1–23

    Google Scholar 

  • Hu L and Phillips A T 1988 Organization and multiple regulation of histidine utilization genes inPseudomonas putida;J. Bacteriol. 170 4272–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenicke R 1990 Protein structure and function at low temperatures;Philos. Trans. R. Soc. London B326 535–553

    Article  CAS  Google Scholar 

  • Jagannadham M V, Jayathirtha Rao V and Shivaji S 1991 The major carotenoid pigment of a psychrotrophicMicrococcus roseus: Purification, structure and interaction of the pigment with synthetic membranes;J. Bacteriol. 173 7911–7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Hou Y and Inouye M 1997 CspA, the major cold shock protein ofEscherichia coli is an RNA chaperone;J. Biol. Chem. 272 196–202

    Article  CAS  PubMed  Google Scholar 

  • Jones P G and Inouye M 1994 The cold shock response a hot topic;Mol. Microbiol. 11 811–818

    Article  CAS  PubMed  Google Scholar 

  • Jones P G and Inouye M 1996 RbfA, a 30S ribosomal binding factor is a cold shock protein whose absence triggers the cold shock response;Mol. Microbiol. 21 1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Jones P G, Cashel M, Glaser G and Neidhardt F C 1992a Function of a relaxed like state following temperature downshifts inEscherichia coli;J. Bacteriol. 174 3903–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P G, Krah R, Tafuri S R and Wolffe A P 1992b DNA gyrase, CS 7.4 and the cold shock response inEscherichia coli;J. Bacteriol. 174 5798–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P G, Mitta M, Kim Y, Jiang W and Inouye M 1996 Cold shock induces a major ribosomal associated protein that unwinds double stranded RNA inEschericia coli;Proc. Natl. Acad. Sci. USA 93 76–80

    Article  CAS  PubMed  Google Scholar 

  • Jones P G, Van Bogelen R A and Neidhardt F C 1987 Induction of proteins in response to low temperature inEscherichia coli;J. Bacteriol. 169 2092–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandror O and Goldberg A L 1997 Trigger factor is induced upon cold shock and enhances viability ofE. coli at low tempertures;Proc. Natl. Acad. Sci, USA 94 4978–4981

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Janiyani K L, Shivaji S and Ray M K 1998 Histidine utilisation operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacteriumPseudomonas syringae;FEMS Microbiol. Lett. 161 7–14

    Article  CAS  PubMed  Google Scholar 

  • Kobori H, Sullivan C W and Shizuya H 1984 Heat labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end-labelling of nucleic acids;Proc. Natl. Acad. Sci. USA 81 6691–6695

    Article  CAS  PubMed  Google Scholar 

  • Le Teana A, Brandi A, Falconi M, Spurio R, Pon C L and Gualerzi C O 1991 Identification of a cold shock transcriptional enhancer of theE. coli gene encoding nucleoid protein H-NS;Proc. Natl. Acad. Sci. USA 88 10907–10911

    Article  PubMed  Google Scholar 

  • Lee S J, Xie A, Jiang W, Etchegaray J P, Jones P G and Inouye M 1994 Family of the major cold shock protein cspA (CS 7·4) ofE. coli where members show a high sequence similarity with the eukaryotic Y-box binding protein;Mol. Microbiol. 11 833–839

    Article  CAS  PubMed  Google Scholar 

  • Lelivelt M J and Kawula T H 1995 Hsc 66, an Hsp 70 homolog inEscherichia coli, is induced by cold shock but not by heat shock;J. Bacteriol. 177 4900–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lottering E A and Streips U N 1995 Induction of cold shock proteins inBacillus subtilis;Curr. Microbiol. 30 193–199

    Article  CAS  PubMed  Google Scholar 

  • Los D A, Ray M K and Murata N 1997 Differences in the control of the temperature dependent expression of four genes for desaturases inSynechocystis sp. PCC 6803;Mol. Microbiol. 25 1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Mangoli S H, Ramanathan Y, Sanzgiri V R and Mahajan S K 1997 Identification, mapping and characterization of two genes ofEscherichia coli K-12 regulating growth and resistance to streptomycin in cold;J. Genet. 76 73–87

    Article  CAS  Google Scholar 

  • Marshall C J 1997 Cold adapted enzyme;TIB TECH. 15 359–364

    CAS  Google Scholar 

  • Mayr B, Kaplan T, Lechner S and Scherer S 1996 Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophicBacillus cereus WSBC 10201;J. Bacteriol. 178 2916–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merriman T R and Lamont I L 1993 Construction and use of a self-cloning promoter probe vector for Gram-negative bacteria;Gene 126 17–23

    Article  CAS  PubMed  Google Scholar 

  • Mitta M, Fang L and Inouye M 1997 Deletion analysis ofcspA inEscherichia coli: requirement of the AT-rich UP element forcspA transcription and the downstream box in the coding region for its cold shock induction;Mol. Microbiol. 26 321–336

    Article  CAS  PubMed  Google Scholar 

  • Monroy A F and Dhindsa R S 1995 Low temperature signal transduction: Induction of cold acclimation specific genes of alfalfa by calcium at 25°C;Plant Cell 7 321–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita R Y 1975 Psychrophilic bacteria;Bacteriol. Rev. 39 144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murata N and Wada H 1995 Acyl lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria;Biochem. J. 308 1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newkirk K, Feng W, Jiang W, Tejero R, Emerson S D, Inouye M and Montelione G T 1994 Solution NMR structure of the major cold shock protein (CspA) fromEscherichia coli: identification of a binding epitope for DNA;Proc. Natl. Acad. Sci. USA 91 5114–5118

    Article  CAS  PubMed  Google Scholar 

  • Nichols D S, Nichols P D and McMeekin T A 1993 Polyunsaturated fatty acid in Antarctic bacteria;Antarct. Sci. 5 149–160

    Article  Google Scholar 

  • Okuyama H, Okajima N, Sasaki S, Higashi S and Murata N 1991 Thecis/trans-isomerization of the double bond of a fattyacid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium,Vibrio sp. strain ABE-1;Biochim. Biophys. Acta 1084 13–20

    Article  CAS  PubMed  Google Scholar 

  • Ray M K, Seshu Kumar G and Shivaji S 1994a Phosphorylation of lipopolysaccharides in the Antarctic psychrotrophPseudomonas syringae: A possible role in temperature adaptation;J. Bacteriol. 176 4243–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray M K, Seshu Kumar G and Shivaji S 1994b Phosphorylation of membrane proteins in response to temperature in an AntarcticPseudomonas syringae;Microbiology 140 3217–3223

    Article  CAS  PubMed  Google Scholar 

  • Ray M K, Seshu Kumar G and Shivaji S 1994c Tyrosine phosphorylation of a cytosolic protein from the antarctic psychrotrophic bacteriumPseudomonas syringae;FEMS Microbiol. Lett. 122 49–54

    Article  CAS  Google Scholar 

  • Ray M K, Sitaramamma T, Ghandhi S and Shivaji S 1994d Occurrence and expression ofcspA a cold shock gene in Antarctic psychrotrophic bacteria;FEMS Microbiol. Lett. 116 55–60

    Article  CAS  PubMed  Google Scholar 

  • Ray M K, Uma Devi K, Seshu Kumar G and Shivaji S 1992 Extracellular protease from the Antarctic yeastCandida humicola;Appl. Environ. Microbiol. 58 1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy G S N, Rajagopalan G and Shivaji S 1994 Thermolabile ribonucleases from antarctic psychrotrophic bacteria: Detection of the enzyme in various bacteria and purification fromPseudomonas fluorescens;FEMS Microbiol. Lett. 122 211–216

    Article  CAS  Google Scholar 

  • Rhode J R, Fox J M and Minnich S A 1994 Thermoregulation inYersinia enterocolitica is coincident with changes in DNA supercoiling;Mol. Microbiol. 12 187–199

    Article  Google Scholar 

  • Russell N J 1984a Mechanism for thermal adaptation in bacteria: blueprint for survival;Trends Biochem. Sci. 9 108–112

    Article  CAS  Google Scholar 

  • Russell N J 1984b The regulation of membrane fluidity in bacteria by acyl chain length changes; inBiomembranes 12 membrane fluidity (eds) M Kates and L A Manson (New York: Plenum) pp 329–347

    Chapter  Google Scholar 

  • Russell N J 1990 Cold adaptation of microorganisms;Philos. Trans. R. Soc. London B326 595–611

    Article  CAS  Google Scholar 

  • Sato N 1995 A family of cold-regulated RNA-binding protein genes in the cyanobacteriumAnabaena variabilis M3;Nucleic Acids Res. 23 2161–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelin H, Jiang W, Inouye M and Heinemann U 1994 Crystal structures of CspA the major cold shock protein ofEscherichia coli;Proc. Natl. Acad. Sci. USA 91 5119–5123

    Article  CAS  PubMed  Google Scholar 

  • Schindelin H, Marahiel M A and Heinemann U 1993 Universal nucleic acid binding domain revealed by crystal structure of theB. subtilis. major cold shock protein;Nature (London) 364 164–168

    Article  CAS  Google Scholar 

  • Schnuchel A, Wiltescheck R, Czisch M, Herrier M, Williamsky G, Grawmann P, Marahiel M A and Holak T A 1993 Structure in solution of the major cold shock protein fromBacillus subtilis;Nature (London) 364 164–171

    Article  Google Scholar 

  • Shivaji S and Ray M K 1995 Survival strategies of psychrotrophic bacteria and yeasts of Antarctica;Indian J. Microbiol. 35 263–281

    Google Scholar 

  • Shivaji S, Shyamala Rao N, Saisree L, Sheth V, Reddy G S N and Bhargava P M 1989 Isolation and identification ofPseudomonas species from Schirmacher Oasis, Antarctica;Appl. Environ. Microbiol. 55 767–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szer W 1970 Cell-free protein synthesis at 0°C. An activating factor from ribosomes of a psychrophilic microorganism;Biochem. Biophys. Acta 213 159–170

    CAS  PubMed  Google Scholar 

  • van Bogelen R A and Neidhardt F C 1990 Ribosomes as senosrs of heat and cold shock inEscherichia coli;Proc. Natl. Acad. Sci. USA 87 5589–5593

    Article  Google Scholar 

  • Vigh L, Los D A, Horvath I and Murata N 1993 The primary signal in the biological perception of temperature: Pd catalyzed hydrogenation of membrane lipids stimulated the expression of thedesA gene inSynechocystis PCC 6803;Proc. Natl. Acad. Sci. USA 90 9090–9094

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Gombos Z and Murata N 1990 Enhancement of chilling tolerance of a Cyanobacterium by genetic manipulation of fatty acid desaturation;Nature (London) 347 200–203

    Article  CAS  Google Scholar 

  • Whyte L G and Innis W E 1992 Cold shock proteins and cold acclimation in a psychrotrophic bacterium;Can. J. Microbiol. 38 1281–1285

    Article  CAS  Google Scholar 

  • Williamsky G, Bang H, Fischer G and Marahiel M A 1992 Characterisation ofcspB, aBacillus subtilis inducible cold shock gene affecting cell viability at low temperatures;J. Bacteriol. 174 6326–6335

    Article  Google Scholar 

  • Wynn-Williams D D 1990 Ecological aspects of Antarctic microbiology;Adv. Microbiol. 11 71–146

    Google Scholar 

  • Zimmer S G and Millette R L 1975 DNA-dependent RNA polymerase fromPseudomonas BAL-31. I. Purification and properties of the enzyme;Biochemistry 14 290–299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay K Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, M.K., Kumar, G.S., Janiyani, K. et al. Adaptation to low temperature and regulation of gene expression in antarctic psychrotrophic bacteria. J. Biosci. 23, 423–435 (1998). https://doi.org/10.1007/BF02936136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936136

Keywords

Navigation