Skip to main content

Magnetism of the Elements

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

This chapter presents the magnetic properties of the elements in relation to their magnetic structure, with emphasis on those that order magnetically in bulk form – iron, cobalt, nickel, manganese, chromium, most of the rare earths and oxygen. All except oxygen are metals. The importance of spin polarisation at the Fermi level is illustrated by the three room-temperature ferromagnets: iron, cobalt and nickel. Manganese and chromium are atypical antiferromagnets; α-Mn is a multi-sublattice antiferromagnet, β-Mn is a spin liquid, and Cr exhibits an incommensurate spin density wave. A summary of the magnetism of the rare earth elements emphasises the effects of the crystal field, their moments and exchange integrals on their magnetic structures and phase transitions. Some magnetoelastic effects are discussed, and a detailed account of the spin polarisation of the heavy rare earths concludes the section. Finally, more exotic forms of magnetism such as the molecular antiferromagnetism of oxygen and defect-induced magnetism, exhibited by p and d-shell elements, such as carbon and ruthenium, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coey, J.M.D.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Coey, J.M.D.: Materials for spin electronics. In: LNP 569, pp. 277–297. Springer, Berlin/Heidelberg (2001)

    Google Scholar 

  3. Warnes, L., King, H.: The low temperature magnetic properties of austenitic Fe-Cr-Ni alloys 2. The prediction of Neel temperatures and maximum susceptibilities. Cryogenics 16(11), 659 (1976)

    Google Scholar 

  4. Hobbs, D.S.D., Hafner, J.: Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of a-Mn. Phys. Rev. B 68, 014407 (2003)

    Google Scholar 

  5. Zabel, H.: Magnetism of chromium at surfaces, at interfaces and in thin films, J. Phys.: Condens. Matter 11, 9303–9346 (1999)

    Google Scholar 

  6. Fawcett, E.: Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209 (1988)

    Article  ADS  Google Scholar 

  7. Fawcett, E., Alberts, H.L., Galkin, V.Y., Noakes, D.R., Yakhmi, J.V.: Spin-density-wave antiferromagnetism in chromium alloys. Rev. Mod. Phys. 66, 25 (1994)

    Article  ADS  Google Scholar 

  8. Jensen, J., Mackintosh, A.R.: Rare Earth Magnetism – Structures and Excitations. Clarendon Press, Oxford (1991)

    Google Scholar 

  9. Houmann, J.G., Rainford, B.D., Jensen, J., Mackintosh, A.R.: Magnetic excitations in praseodymium. Phys. Rev. B 20, 1105 (1979)

    Article  ADS  Google Scholar 

  10. Plessis, P.D.V.D.: Magnetic anisotropy of some heavy rare-earth metals. Physica 41, 379 (1969)

    Article  ADS  Google Scholar 

  11. Mazin, I.I.: How to define and calculate the degree of spin polarization in ferromagnets. Phys. Rev. Lett. 83, 1427 (1998)

    Article  ADS  Google Scholar 

  12. Stamenov, P.: Point contact andreev reflection from erbium: the role of external magnetic field and the sign of the spin polarization. J. Appl. Phys. 111, 07C519 (2012)

    Google Scholar 

  13. Min, B.I., Jang, Y.R.: The effect of the spin-orbit interaction on the electronicstructure of magnetic materials. J. Phys.: Condens. Matter 3, 5131 (1991)

    ADS  Google Scholar 

  14. Allenspach, R., Mauri, D., Taborelli, M., Landolt, M.: Spin-polarized Auger-electron spectroscopy. Phys. Rev. B 35, 4801 (1987)

    Article  ADS  Google Scholar 

  15. Shirokovskii, V.P., Kirillova, M.M., Shilkova, N.A.: An optical absorption anomaly in iron. Sov. Phys. JETP 55, 464 (1982)

    ADS  Google Scholar 

  16. Busch, G., Campagna, M., Siegmann, H.C.: Spin-polarized photoelectrons from Fe, Co, and Ni. Phys. Rev. B 4, 746 (1971)

    Article  ADS  Google Scholar 

  17. Chrobok, G., Hofmann, M., Regenfus, G., Sizmann, R.: Spin polarization of field-emitted electrons from Fe, Co, Ni, and rare-earth metals. Phys. Rev. B 15, 429 (1976)

    Article  ADS  Google Scholar 

  18. Valentine, J.M., Chien, C.L.: Determination of spin polarization of Gd and Dy by point-contactAndreev reflection. J. Appl. Phys. 99, 08P902 (2006)

    Google Scholar 

  19. Stamenov, P., Coey, J.: Fermi level spin polarization of polycrystalline thulium by point contact Andreev reflection spectroscopy. J. Appl. Phys. 109, 07C713 (2011)

    Google Scholar 

  20. Meservey, R., Paraskevopoulos, D., Tedrow, P.M.: Tunneling measurements of conduction-electron-spin polarizationin heavy rare-earth metals. Phys. Rev. B 22, 1331 (1980)

    Article  ADS  Google Scholar 

  21. Fecher, G., Morais, J., Liesegang, J., Braun, J., Cherepkov, N., Oelsner, A., Günther, M., Schicketanz, M., Schönhense, G.: Spin polarisation and dichroism in ARUPS from thin rare earthfilms. J. Electr. Spec. 114, 1171 (2001)

    Article  Google Scholar 

  22. Caneschi, A., Gatteschi, D., Sessoli, R.: Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 State in [Mn12012(CH3C00)16(H20)4].2CH3C00H.4H20. J. Am. Chem. Soc. 113, 5873–5874 (1991)

    Google Scholar 

  23. Wickman, H.H., Trozzolo, A.M., Williams, H.J., Hull, G.W., Merritt, F.R., Spin-3/2 iron ferromagnet: its mossbauer and magnetic properties. Phys. Rev. 163, 526 (1967)

    Article  ADS  Google Scholar 

  24. Gomonay, E.V., Loktev, V.M.: Shift of the basal planes as the order parameter of transitions between the antiferromagnetic phases of solid oxygen. Low Temp. Phys. 31(8–9), 763 (2005)

    Article  ADS  Google Scholar 

  25. DeFotis, G.C.: Mgnetism of solid oxygen. Phys. Rev. B 23(9), 4714 (1981)

    Article  ADS  Google Scholar 

  26. Mpms application note 1014-210 oxygen contamination

    Google Scholar 

  27. Gregory, S.: Magnetic susceptibility of oxygen adsorbed on graphite. Phys. Rev. Lett. 40(11), 723 (1978)

    Article  ADS  Google Scholar 

  28. Morris, G., Brewer, J., Dunsiger, S., Montour, M.: Antiferromagnetism in solid oxygen. Hyperfine Interact. 104, 381–385 (1997)

    Article  ADS  Google Scholar 

  29. Gorelli, F., Ulivi, L., Santoro, M., Bini, R.: Antiferromagnetic order in the d phase of solid oxygen. Phys. Rev. B 62(6), R3604 (2000)

    Article  ADS  Google Scholar 

  30. Gorelli, F.A., Santoro, M.: High-pressure antiferromagnetic phases of solid oxygen. J. Raman Spectrosc. 34, 549–556 (2003)

    Article  ADS  Google Scholar 

  31. Ramírez-Solís, A., Zicovich-Wilson, C.M., Hernández-Lamonedab, R., Ochoa-Callec, A.J.: Antiferromagnetic vs. non-magnetic e phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange. Phys. Chem. Chem. Phys. 19, 2826 (2017)

    Google Scholar 

  32. Volnianska, O., Boguslawski, P.: Magnetism of solids resulting from spinpolarization of p orbitals. J. Phys.: Condens. Matter 22, 073202 (2010)

    ADS  Google Scholar 

  33. Simon, H.A.F., Náfrádi, B., Fehér, T., Forró, L., Fülöp, F., Jánossy, A., Korecz, L., Rockenbauer, A., Hauke, F., Hirsch, A.: Magnetic fullerenes inside single-wall carbon nanotubes. Phys. Rev. Lett. 97, 136801 (2006)

    Article  ADS  Google Scholar 

  34. Parkansky, N., Alterkop, B., Boxman, R.L., Leitus, G., Berkh, O., Barkay, Z., Rosenberg, Y., Eliaz, N.: Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol. Carbon 46, 215 (2008)

    Article  Google Scholar 

  35. Rode, A.V., Gamaly, E.G., Christy, A.G., Gerald, J.G.F., Hyde, S.T., Elliman, R.G., Luther-Davies, B., Veinger, A.I., Androulakis, J., Giapintzakis, J.: Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B 70, 054407 (2004)

    Article  ADS  Google Scholar 

  36. Esquinazi, P., Spemann, D., Höhne, R., Setzer, A., Han, K.H., Butz, T.: Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91, 227201 (2003)

    Article  ADS  Google Scholar 

  37. Ohldag, H., Tyliszczak, T., Höhne, R., Spemann, D., Esquinazi, P., Ungureanu, M., Butz, T.: π-electron ferromagnetism in metal-free carbon probed by soft X-ray dichroism. Phys. Rev. Lett. 98, 187204 (2007)

    Google Scholar 

  38. Pang, R., Deng, B., Shi, X., Zheng, X.: Giant magnetic anisotropy of heavy p-elements on high-symmetrysubstrates: a new paradigm for supported nanostructures. New J. Phys. 20, 043056 (2018)

    Article  ADS  Google Scholar 

  39. Quarterman, P., Sun, C., Garcia-Barriocanal, J., Mahendra, D.C., Lv, Y., Manipatruni, S., Nikonov, D.E., Young, I.A., Voyles, P.M., Wang, J.P.: Demonstration of Ru as the 4th ferromagneticelement at room temperature. Nat. Commun. 9, 2058 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Stamenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stamenov, P. (2021). Magnetism of the Elements. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_15

Download citation

Publish with us

Policies and ethics