Skip to main content
Log in

Variations on a theme: Combined molecular chaperone and proteolysis functions in Clp/HSP100 proteins

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Most stress-inducible polypeptides are members of broader protein families that function either as molecular chaperones or constituents of proteolytic pathways. These systems control many aspects of protein structure and function throughout the cell under all types of growth regimes. The Clp/HSP1 00 protein family is a recently characterized representative, with constitutive and stress-inducible members found in many different organisms and various intracellular locations. Besides being regulators of energy-dependent proteolysis, Clp proteins may also function as molecular chaperones. Constitutive Clp proteins are involved foremost in cellular protein maintenance and repair, in cooperation with other chaperone and proteolytic systems. At high temperatures, additional Clp proteins are induced in response to rising levels of inactive polypeptides, resulting from either biosynthetic errors, thermal denaturation and aggregation. Clp proteins presumably help to stabilize selected polypeptides during severe thermal stress and enable resolubilization of non-functional protein aggregates, as well as promoting the degradation of irreversibly damaged polypeptides. The union of chaperone and proteolytic regulatory functions in one molecule suggests that certain Clp proteins play a decisive role in determining the destiny of proteins, not only during normal growth but also under conditions of extreme stress. This review briefly covers recent findings on the diversity of Clp proteins and their potential importance within the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chernoff Y O, Lindquist S L, Ono B-I, Inge-Vechtomov S G and Liebman S W 1995 Role of the chaperone protein hsp104 in propagation of the yeast prion-like factor [psi +];Science 268 880–883

    Article  PubMed  CAS  Google Scholar 

  • Clarke A K and Critchley C 1992 The identification of a heat-shock protein complex in chloroplasts of barley leaves;Plant Physiol. 100 2081–2089

    PubMed  CAS  Google Scholar 

  • Clarke A K, Gustafsson P and Lidholm J Å 1994 Identification and expresion of the chloroplastclpP gene in the coniferPinus contorta;Plant Mol. Biol. 26 851–862

    Article  PubMed  CAS  Google Scholar 

  • Ellis R J and Van der Vies S M 1991 Molecular chaperones;Annu. Rev. Biochem. 60 321–347

    Article  PubMed  CAS  Google Scholar 

  • Flanagan.J M, Wall J S, Capel M S, Schneider D K and Shanklin J 1995 Scanning transmission electron microscopy and small-angle scattering provide evidence that nativeEscherichia coli ClpP is a tetramer with an axial pore;Biochemistry 34 10910–10917

    Article  PubMed  Google Scholar 

  • Fleischmann R D, Adams M D, White O, Clayton R A, Kirkness E F, Kerlavage A R, Blut C J, Tomb J-F, Dougherty B A, Merrick J M, McKenney K, Sutton G, FitzHugh W, Fields C, Gocayne J D, Scott J, Shirley R, Liu L-I, Glodek A, Kelley J M, Weidman J F, Phillips C A, Spriggs T, Hedblom E, Cotton M D, Utterback T R, Hanna M C, Nguyen D T, Saudek D M, Brandon R C, Fine L D, Fritchman J L, Fuhrmann J L, Geoghagen N S M, Gnehm C L, McDonald L A, Small K V, Fraser C M, Smith H O and Venter J C 1995 Whole-genome random sequencing and assembly ofHaemophilus influenzae Rd;Science 269 496–512

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S 1989 Genetics of proteolysisin Escherichia coli;Annu. Rev. Genet. 23 163–198

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Clark W P, de Grecy-Lagard V and Maurizi M R 1993 ClpX, an alternative subunit for the ATP-dependent Clp protease ofEscherichia coli;J. Biol. Chem. 268 22618–22626

    PubMed  CAS  Google Scholar 

  • Gottesman S and Maurizi M R 1992 Regulation by proteolysis: energy-dependent proteases and their targets;Microbiol. Rev. 56 592–621

    PubMed  CAS  Google Scholar 

  • Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick J S, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark W P, Ross B, Squires C L and Maurizi M R 1990 Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes;Proc. Natl. Aacd Sci. USA 87 3513–3517

    Article  CAS  Google Scholar 

  • Grant C M, Firoozan M and Tuite M F 1989 Mistranslation induces the heat-shock response in the yeastSaccharomyces cerevisiae;Mol. Microbiol. 3 215–220

    Article  PubMed  CAS  Google Scholar 

  • Hammond J B W and Preiss J 1983 ATP-dependent proteolytic activity from spinach leaves;Plant Physiol. 73 902–905

    Article  PubMed  CAS  Google Scholar 

  • Hillier L, Aaronson J, Marra M, Soares M, Lennon G, Blevins R, Bonaldo M, Chiapelli B, Chissoe S, Clark N, Dubuque T, Favello A, Gish W, Hawkins M, Holman M, Hultman M, Kucaba T, Le M, Mardis E, Parsons J, Prange C, Rifkin L, Rohlfing T, Tan F, Trevaskis E, Vaudin M, Wohldman P, Waterston R, Williamson A, Elliston K and Wilson R 1995 Generation and preliminary analysis of the first 100,000 human expressed sequence tags from the Wash U-Merck EST project;Nature (London) (in press)

  • Hwang B J, Park W J, Chung C H and Goldberg A L 1987Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La;Proc. Natl. Acad. Sci. USA 84 5550–5554

    Article  PubMed  CAS  Google Scholar 

  • Jacobson M R, Brigle K E, Bennett L T, Setterquist R A, Wilson M S, Cash V L, Beynon J, Newton W E and Dean D R 1989 Physical and genetic map of the majornif gene cluster fromAzotobacter vinelandii;J. Bacteriol. 171 1017–1027

    PubMed  CAS  Google Scholar 

  • Katayama-Fujimura Y S, Gottesman S and Maurizi M R 1987 A multiple-component, ATP-dependent protease fromEscherichia coli;J. Biol. Chem. 262 4477–4485

    PubMed  CAS  Google Scholar 

  • Katayama Y, Gottesman S, Pumphrey J, Rudikoff S, Clark W P and Maurizi M R 1988 The two-conponent, ATP-dependent Clp protease ofEscherichia coli;J. Biol, Chem. 263 15226–15236

    CAS  Google Scholar 

  • Kessel M, Maurizi M R, Kim B, Kocsis E, Trus B L, Singh S K and Steven A C 1995 Homology in structural organization betweenE. coli ClpAP protease and the eukaryotic 26S proteasome;J. Mol. Biol. 250 587–594

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K and Shinozaki K 1993 Characterization of cDNA for a dehydrationinducible gene that encodes a ClpA, B-like protein inArabidopsis thaliana L;Biochem. Biophys. Res. Commun. 196 1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Doung C and Ko Z W 1994 Nucleotide sequence of aBrassica napus Clp homolog;Plant Physiol. 104 1087–1089

    Article  PubMed  CAS  Google Scholar 

  • Kohchi T, Ogura Y, Umesono K, Yamada Y, Komano T, Ozeki H and Ohyama K 1988 Ordered processing and splicing in a polycistronic transcript in lverwort chloroplasts;Curr. Genet. 14 147–154

    Article  PubMed  CAS  Google Scholar 

  • Koller B, Fromm H, Galun E and Edelman M 1987 Evidence forin vivo trans splicing of pre-mRNAs in tobacco chloroplasts;Cell 48 111–119

    Article  PubMed  CAS  Google Scholar 

  • Kroh H E and Simon L D 1990 The ClpP component of Clp protease in the α32-dependent heat shock protein F21.5,J. Bacteriol. 172 6026–6034

    PubMed  CAS  Google Scholar 

  • Krüger E, Völker U and Hecker M 1994 Stress induction ofclpC inBacillus subtilis and its involvement in stress tolerance;J. Bacteriol. 176 3360–3367

    PubMed  Google Scholar 

  • Lee Y-R J, Nagao R T and Key J L 1994 A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance;Plant Cell 6 1889–1897

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt S A, Fearon K, Danese P N and Mason T L 1993 Hsp78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases;Mol. Cell. Biol. 13 6304–6413

    PubMed  CAS  Google Scholar 

  • Levchenko I, Luo L and Baker T A 1995 Disassembly of the Mu transposase tetramer by the ClpX chaperone;Genes Dev. 9 2399–2408

    Article  PubMed  CAS  Google Scholar 

  • Liu X-Q and Jagendorf A T 1984 ATP-dependent proteolysis in pea chloroplasts;FEBS Lett. 166 248–252

    Article  CAS  Google Scholar 

  • Malek L, Bogorad L, Ayers A R and Goldberg A L 1984 Newly synthesized proteins are degraded by an ATP-stimulated proteolytic process in isolated pea chloroplasts;FEBS Lett. 166 253–257

    Article  CAS  Google Scholar 

  • Maurizi M R 1991 ATP-promoted intention between ClpA and ClpP in activation of Clp protease fromEscherichia;Biochem. Soc. Trans. 19 719–723

    PubMed  CAS  Google Scholar 

  • Maurizi M R, Clark W P, Katayama Y, Rudikoff S, Pumphrey J, Bowers B and Gottesman S 1990a Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clap protease ofEcherichia coli;J. Biol. Chem. 265 12536–12545

    PubMed  CAS  Google Scholar 

  • Maurizi M R, Clark W P, Kim S-H and Gottesman S 1990b ClpP represents a unique family of serine proteases;J. Biol. Chem. 265 12546–12552

    PubMed  CAS  Google Scholar 

  • Mhammedi-Alaoui A, Pato M, Gama M-J and Toussaint A 1994 A new component of bacteriophage Mu replicative transposition machinery: theEscherichia ClpX protein;Mol. Microbiol,11 1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Moore T and Keegstra K 1993 Characterization of a cDNA clone encoding a chloroplast targeted Clp homologue;Plant Mol. Biol. 21 525–537

    Article  PubMed  CAS  Google Scholar 

  • Msadek T, Kunst F and Rapoport G 1994 MecB ofBacillus subtilis, a member of the ClpC ATPase family, is a pleiotrophic regulator controlling competence gene expression and growth at high temperature;Proc. Natl. Acad. Sci. USA 91 5788–5792

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M and Hirai A 1993 Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice;Mol. Gen. Genet. 236 341–346

    Article  PubMed  CAS  Google Scholar 

  • Nath I and Laal S 1990 Nucleotide sequence and deduced amino acid sequence ofMycobacterium leprae gene shows homology to bacterialatp operon;Nucleic Acids Res. 18 4935

    Article  PubMed  CAS  Google Scholar 

  • Park S K, Kim K I, Woo K M, Seal J H, Tanaka K, Ichihara A, Ha D B and Chung C H 1993 Site-directed mutagenesis of the dual translational initiation sites of theclpB gene inEscherichia coli and characterizeation of its gene products;J. Biol. Chem. 268 20170–20174

    PubMed  CAS  Google Scholar 

  • Parsell D A, Kowal A S and Lindquist S 1994aSaccharomyces cerevisiae Hsp104 protein;J. Biol. Chem. 269 4480–4487

    PubMed  CAS  Google Scholar 

  • Parsell D A, Kowal A S, Singer M A and Lindquist S 1994b Protein disaggregation mediated by heat-shock protein Hsp104;Nature (London) 372 475–478

    Article  CAS  Google Scholar 

  • Parsell D A and Lindquist S 1993 The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins;Annu. Rev. Genet 27 437–496

    Article  PubMed  CAS  Google Scholar 

  • Pearce B J, Yin Y B and Masure H R 1993 Genetic identification of exported proteins inStreptococcus pneumoniae;Mol. Microbiol. 9 1037–1050

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner M, Hoffman L and Dubiel W 1993 The multicatalytic and 26S proteases;J. Biol. Chem. 268 6065–6068

    PubMed  CAS  Google Scholar 

  • Sanchez Y and Lindquist S L 1990 HSP104 required for induced thermotolerance;Science 248 1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Parsell D A, Taulin J, Vogel J L, Craig E A and Lindquist S 1993 Genetic evidence for functional relationship between Hsp104 and Hsp70;J. Bacteriol. 175 6484–6491

    PubMed  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich K A and Lindquist S 1992 Hsp104 is required for tolerance to many forms of stress;EMBO J. 11 2357–2364

    PubMed  CAS  Google Scholar 

  • Schaller A and Ryan C A 1995 Cloning of a tomato cDNA (GenBank L38581) encoding the proteolytic subunit of a Clp-like energy dependent protease (PGR95-001);Plant Physiol. 108 1341

    Google Scholar 

  • Schirmer E C, Lindquist S and Vierling E 1994 An Arabidopsis heat shock protein complements a thermotoleranc defect in yeast;Plant Cell 6 1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M, Neupert W and Langer T 1995 Hsp78, Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70;EMBO J. 14 3434–3444

    PubMed  CAS  Google Scholar 

  • Seal J H, Baek S H, Kang M-S, Ha D B and Chung C H 1995 Distinctive roles of the two ATP-binding sites in ClpA, the ATPase component of protease Ti inEscherichia coli;J. Biol. Chem. 270 8087–8092

    Article  Google Scholar 

  • Shanklin J, DeWitt N D and Flanagan J M 1995 The stroma of higher plant plastids contain Clp P and ClpC, functional homologs ofEscherichia coli ClpP and ClpA: An archetypal two-component ATP-dependent protease;Plant Cell 71 713–1722

    Google Scholar 

  • Singh S K and Maurizi M R 1994 Mutational analysis demonstrates different functional roles for the two ATP-binding sites in ClpAP protease fromEscherichia coli;J. Biol. Chem. 269 29537–29545

    PubMed  CAS  Google Scholar 

  • Squires C L, Pedersen S, Ross B M and Squires C 1991 ClpB is theEscherichia coil heat shock protein F84.1;J. Bacteriol. 173 4254–4262

    PubMed  CAS  Google Scholar 

  • Squires C and Squires C L 1992 The Clp proteins: Proteolysis Regulators or Molecular Chaperones?;J. Bacteriol. 174 1081–1085

    PubMed  CAS  Google Scholar 

  • Thompson M W and Maurizi M R 1994 Activity and specificity ofEscherichia coli ClpA P protease in cleaving model peptide substrates;J. Biol. Chem. 269 18201–18208

    PubMed  CAS  Google Scholar 

  • Tobias J W, Shrader T E, Rocap G and Varshavsky A 1991 The N-end rule in bacteia;Science 254 1374–1377

    Article  PubMed  CAS  Google Scholar 

  • Van Bogelen R A and Neidhardt F C 1990 Ribosomes as sensors of heat and cold shock inEscherichia coli;Proc. Natl. Acad. Sci. USA 87 5589–5593

    Article  Google Scholar 

  • Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B, Jonsen M, Graves B, Georgopoulos C and Zylicz M 1995 The ClpX heat-shock ofEscherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone;EMBO J. 14 1867–1877

    PubMed  CAS  Google Scholar 

  • Weglöhner W and Subramanian A R 1992 Nucleotide sequence of a region of maize chloroplast DNA containing the 3′ end ofclpP, exon 1 ofrpsl 2 andrp120 and their cotranscription;Plant Mol. Biol. 18 415–418

    Article  PubMed  Google Scholar 

  • Welch W J 1993 Heat shock proteins functioning as molecular chaperones: their role in normal and stressed cells;Philos. Trans. R. Soc. London B339 327–333

    Google Scholar 

  • Wickner S, Gottesman S, Skowyra D, Hoskins J, McKenney K and Maurizi M R 1994 A molecular chaperone, ClpA, functions like DnaK and DnaJ;Proc. Natl. Acad. Sci. USA 91 12218–12222

    Article  PubMed  CAS  Google Scholar 

  • Wojtkowiak D, Georgopoulos C and Zylicz M 1993 Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease ofEscherichia coli;J. Biol. Chem. 268 22609–22617

    PubMed  CAS  Google Scholar 

  • Woo K M, Chung W J, Ha D B, Goldberg A L and Chung C H 1989 Protease Ti fromEscherichia coli requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides;J. Biol. Chem. 264 2088–2091

    PubMed  CAS  Google Scholar 

  • Woo K M, Kim K I, Goldberg A L, Ha D B and Chung C H 1992 The heat-shock protein ClpB inEscherichia coli is a protein-activated ATPase;J. Biol. Chem. 267 20429–20434

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A.K. Variations on a theme: Combined molecular chaperone and proteolysis functions in Clp/HSP100 proteins. J Biosci 21, 161–177 (1996). https://doi.org/10.1007/BF02703106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703106

Keywords

Navigation