Skip to main content
Log in

Identification and expression of the chloroplast clpP gene in the conifer Pinus contorta

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The clpP gene from the conifer Pinus contorta was identified and isolated from a chloroplast genomic library by heterologous hybridisation to the second exon of the chloroplast clpP gene in tobacco. DNA sequencing of two overlapping clones revealed an uninterrupted 615 bp open-reading frame with 41 to 65% similarity to the clpP genes in five other chloroplast genomes and Escherichia coli. The 615 bp sequence in P. contorta contained perfectly matched motifs for the serine and histidine active sites of the ClpP protease in E. coli. The location of the clpP gene was determined using a physical map of the P. contorta chloroplast genome, and was found to lie within a 10 kb region between the psbE/F and rpoB genes. Sequencing of the regions adjacent to the clpP gene revealed the first exon of the rps12 gene located 135 bp downstream. The genomic position of the first exon of the rps12 gene in relation to the clpP gene is conserved for all other chloroplast clpP genes identified so far. Northern blot analysis showed that the clpP gene in both P. contorta and P. sylvestris was present in several transcript of different length, ranging from 0.8 to 2.4 kb. The two longer transcripts in P. contorta also included the first exon of the rps12 gene. Mapping of the 5′ end of the clpP transcripts by primer extension, however, revealed a single transcription initiation site 53 bp upstream of the first ATG codon. Analysis of total RNA isolated from the two pine species grown in darkness or moderate light conditions (250 μmol photons m-2 s-1) showed no significant difference in the level of expression of the clpP gene. The results suggest that the clpP gene in conifers is part of an operon which includes the first exon of the rps12 and the entire rpl20 gene, and is expressed in a light-independent manner as a polycistronic precursor which later undergoes post-transcriptional processing to give the mature monocistronic clpP mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JD, Smith, JA, Struhl, K: Current Potocols in Molecular Biology. John Wiley, New York (1987).

    Google Scholar 

  2. Beers, EP, Moreno, TN, Callis, J: Subcellular localization of ubiquitin and ubiquitinated proteins in Arabidopsis thaliana. J Biol Chem 267: 15432–15439 (1992).

    PubMed  Google Scholar 

  3. Bradbeer, JW: Development of photosynthetic function during chloroplast biogenesis. In: Hatch, MD, Boardman NK (eds) The Biochemistry of Plants, vol. 8, pp. 423–472. Academic Press, London (1981).

    Google Scholar 

  4. Davies, DD: Physiological aspects of protein turnover. In: Coulter, D, Parthier, B (eds) Encyclopedia of Plant Physiology, vol. 14A, pp. 189–228. Springer-Verlag, Berlin (1982).

    Google Scholar 

  5. Devreux, J, Haeberli, P, Smithies, O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  6. Feinberg, AP, Volgelstein, B: A technique for radiolabelling DNA endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  7. Gray, JC, Hird, SM, Dyer, TA: Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol 15: 947–950 (1990).

    PubMed  Google Scholar 

  8. Harr, R, Fällman, P, Häggström, M, Walhström, L, Gustafsson, P: GENEUS, a computer system for DNA and protein sequence analysis containing an information retrieval system for the EMBL data library. Nucl Acids Res 14: 273–284 (1986).

    PubMed  Google Scholar 

  9. Hershko, A, Ciechanover, A: The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–807 (1992).

    Article  PubMed  Google Scholar 

  10. Hiratsuka, J, Shimada, H, Whittier, R, Ishibashi, T, Sakamoto M, Mori, M, Kondo, C, Honji, Y, Sun, C-R, Meng B-Y, Li, Y-Q, Kanno, A, Nishizawa, Y, Hirai, A, Shinozaki K, Sugiura, M: The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194 (1989).

    PubMed  Google Scholar 

  11. Jansson, S, Gustafsson, P: Type I and type II genes for the chlorophyll a/b-binding protein in the gymnosperm Pinus sylvestris (Scots pine): cDNA cloning and sequence analysis. Plant Mol Biol 14: 287–296 (1990).

    PubMed  Google Scholar 

  12. Kohchi, T, Ogura, Y, Umesono, K, Yamada, Y, Komano, T, Ozeki, H, Ohyama, K: Ordered processing and splicing in a polycistronic transcript in liverwort chloroplasts. Curr Genet 14: 147–154 (1988).

    PubMed  Google Scholar 

  13. Koller, B, Fromm, H, Galun, E, Edelman, M: Evidence for in vivo trans splicing of pre-mRNAs in tobacco chloroplasts. Cell 48: 111–119 (1987).

    Article  PubMed  Google Scholar 

  14. Lewandowska, M, Öquist, G: Development of photosynthetic electron transport in Pinus sylvestris. Physiol Plant 48: 134–138 (1980).

    Google Scholar 

  15. Lewandowska, M, Öquist, G: Structural and functional relationships in developing Pinus sylvestris chloroplasts. Physiol Plant 48: 39–46 (1980).

    Google Scholar 

  16. Lidholm, J, Gustafsson, P: The chloroplast genome of the gymnosperm Pinus contorta: a physical map and a complete collection of overlapping clones. Curr Genet 20: 161–166 (1991).

    Article  PubMed  Google Scholar 

  17. Lidholm, J, Gustafsson, P: A functional promoter shift of a chloroplast gene: a transcriptional fusion between a novel psbA gene copy and the trnK(UUU) gene in Pinus contorta. Plant J 2: 875–886 (1992).

    Article  PubMed  Google Scholar 

  18. Liu, X-Q, Jagendorf, AT: ATP-dependent proteolysis in pea chloroplasts. FEBS Lett 166: 248–252 (1984).

    Article  Google Scholar 

  19. Liu, X-Q, Jagendorf, AT: Roles for ATP-dependent and ATP-independent proteases of pea chloroplasts in regulation of the plastid translation products. Physiol Vég 23: 749–755 (1985).

    Google Scholar 

  20. Malek, L, Bogorad, L, Ayers, AR, Goldberg, AL: Newly synthesized proteins are degraded by an ATP-stimulated proteolytic process in isolated pea chloroplasts. FEBS Lett 166: 253–257 (1984).

    Article  Google Scholar 

  21. Maurizi, MR, Clark, WP, Katayama, Y, Rudikoff, S, Pumphrey J, Bowers, B, Gottesman, S: Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265: 12536–12545 (1990).

    PubMed  Google Scholar 

  22. Maurizi, MR, Clark, WP, Kim, SH, Gottesman, S: Clp P represents a unique family of serine proteases. J Biol Chem 265: 12546–12552 (1990).

    PubMed  Google Scholar 

  23. Michel-Wolwertz, MR, Bronchart, R: Formation of prolamellar bodies without correlative accumulation of protochlorophyllide or chlorophyllide in pine cotyledons. Plant Sci Lett 2: 45–54 (1974).

    Google Scholar 

  24. Moore, T, Keegstra, K: Characterization of a cDNA clone encoding a chloroplast-targeted Clp homologue. Plant Mol Biol 21: 525–537 (1993).

    Article  PubMed  Google Scholar 

  25. Rechsteiner, M, Hoffman, L, Dubiel, W: The multicatalytic and 26 S proteases. J Biol Chem 268: 6065–6068 (1993).

    PubMed  Google Scholar 

  26. Sambrook, J, Fritsch, EF, Maniatis, T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  27. Shinozaki, K, Ohme, M, Tanaka, M, Wakasugi, T, Hayashida N, Matsubayashi, T, Zaita, N, Chunwongse, J, Obokata, J, Yamaguchi-Shinozaki, K, Ohto, C, Torazawa K, Meng, BY, Sugita, M, Deno, H, Kamogashira, T, Yamada, K, Kusuda, J, Takaiwa, F, Kato, A, Tohdoh, N, Shimada, H, Sugiura, M: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049 (1986).

    Google Scholar 

  28. Sugiura, M: The chloroplast genome. Plant Mol Biol 19: 149–168 (1992).

    Article  PubMed  Google Scholar 

  29. Veierskov, B, Ferguson, IB: Conjugation of ubiquitin to proteins from green plant tissue. Plant Physiol 96: 96: 4–9 (1991).

    Google Scholar 

  30. Vierstra, RD: Protein degradation in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 385–410 (1993).

    Article  Google Scholar 

  31. Weglöhner, W, Subramanian, AR: Nucleotide sequence of a region of maize chloroplast DNA containing the 3′ end of clpP, exon 1 of rps12 and rpl20 and their cotranscription. Plant Mol Biol 18: 415–418 (1992).

    PubMed  Google Scholar 

  32. Westhoff, P: Transcription of the gene encoding the 51 kDa chlorophyll a-apoprotein of the photosystem II centre from spinach. Mol Gen Genet 201: 115–123 (1985).

    Google Scholar 

  33. Wettern, M, Parag, HA, Pollmann, L, Ohad, I, Kulka, RG: Ubiquitin in Chlamydomonas reinhardii. Eur J Biochem 191: 571–576 (1990).

    PubMed  Google Scholar 

  34. Wolfe, KH, Morden, CW, Palmer, JD: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A.K., Gustafsson, P. & Lidholm, J.Å. Identification and expression of the chloroplast clpP gene in the conifer Pinus contorta . Plant Mol Biol 26, 851–862 (1994). https://doi.org/10.1007/BF00028853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028853

Key words

Navigation