Skip to main content
Log in

Mitochondrial genome organization and cytoplasmic male sterility in plants

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Plant mitochondrial genomes are much larger and more complex than those of other eukaryotic organisms. They contain a very active recombination system and have a multipartite genome organization with a master circle resolving into two or more subgenomic circles by recombination through repeated sequences. Their protein coding capacity is very low and is comparable to that of animal and fungal systems. Several subunits of mitochondrial functional complexes, a complete set of tRNAs and 26S, 18S and 5S rRNAs are coded by the plant mitochondrial genome. The protein coding genes contain group II introns. The organelle genome contains stretches of DNA sequences homologous to chloroplast DNA. It also contains actively transcribed DNA sequences having open reading frames. Plasmid like DNA molecules are found in mitochondria of some plants

Cytoplasmic male sterility in plants, characterized by failure to produce functional pollen grains, is a maternally inherited trait. This phenomenon has been found in many species of plants and is conveniently used for hybrid plant production. The genetic determinants for cytoplasmic male sterility reside in the mitochondrial genome. Some species of plants exhibit more than one type of cytoplasmic male sterility. Several nuclear genes are known to control expression of cytoplasmic male sterility. Different cytoplasmic male sterility types are distinguished by their specific nuclear genes(rfs) which restore pollen fertility. Cytoplasmic male sterility types are also characterized by mitochondrial DNA restriction fragment length polymorphism patterns, variations in mitochondrial RNAs, differences in protein synthetic profiles, differences in sensitivity to fungal toxins and insecticides, presence of plasmid DNAs or RNAs and also presence of certain unique sequences in the genome. Recently nuclear male sterility systems based on (i) over expression of agrobacterialrol C gene and (ii) anther specific expression of an RNase gene have been developed in tobacco andBrassica by genetic engineering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey-Serres J, Dixon L K, Liddell A D and Leaver C J 1986a Nuclear-mitochondrial interaction in cytoplasmic male sterile sorghum;Theor. Appl. Genet. 73 252–260

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J D, Hanson D K, Fox T D and Leaver C J 1986b Mitochondrial genome rearrangement leads to extension and realocation of the cytochrome c oxidase subunit I gene in sorghum;Cell 47 567–576

    Article  CAS  PubMed  Google Scholar 

  • Bland M M, LevingsIII C S and Matzinger D F1986 The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame;Mol Gen. Genet. 204 8–16

    Article  CAS  PubMed  Google Scholar 

  • Boeshore M L, Hanson M R and Izhar S 1985 A variant mitochondrial DNA arrangement specific toPetunia stable sterile somatic hybrids;Plant Mol Biol. 4 125–132

    Article  CAS  PubMed  Google Scholar 

  • Bonen L and Gray M W 1980 Organization and expression of the mitochondrial genome of plants. 1. The genes for wheat mitochondrial ribosomal and transfer RNA: evidence for an unusual arrangement;Nucleic Acids Res. 8 319–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhomme S, Budar F, Ferault M and Pelletier G 1991 A 2.5 kb Ncol fragment ofOgura radish mitochondrial DNA is correlated with cytoplasmic male sterility inBrassica cybrids;Curr. Genet. 19 121–127

    Article  CAS  Google Scholar 

  • Boutry M, Briquet M and Goffeau A 1983 The alpha-subunit of a plant mitochondrial F1-ATPase is translated in mitochondria;J. Biol Chem. 258 8524–8526

    CAS  PubMed  Google Scholar 

  • Braun C J, Brown G G and Levings C S 1992 Cytoplasmic male sterility; inPlant gene research: cell organelles (ed.) R G Herman (Wein: Springer Verlag) pp 219–245

    Chapter  Google Scholar 

  • Braun C J and Levings C J 1985 Nucleotide sequence of the F1-ATPase alpha-subunit gene from maize mitochondria;Plant Physiol. 79 571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown T A, Waring R B, Scazzocchio C and Davies R W 1985 TheAspargillus nidulans mitochondrial genome;Curr, Genet. 9 113–117

    Article  CAS  Google Scholar 

  • Bruijn M H LD 1983Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code;Nature (London) 304 234–241

    Article  Google Scholar 

  • Canal L de la, Crouzillat D, Flamand M C, Perrault A, Boutry M and Ledoigt G 1991 Nucleotide sequence and transcriptional analysis of a mitochondrial plasmtid from cytoplasmic male sterile line of sunflower;Theor. Appl. Genet. 81 812–818

    Article  PubMed  Google Scholar 

  • Carlson J E, Erickson L R and Kemble R J 1986 Cross hybridization between organelle RNAs and mitochondrial and chloroplast genome inBrassica;Curr. Genet. 11 161–163

    Article  CAS  Google Scholar 

  • Chao S, Sederoff R R and Levings III C S 1983 Partial sequence analysis of 5S to 18S rRNA gene region of the maize mitochondrial genome;Plant Physiol. 71 190–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Muthukrishnan M, Liang G H, Schertz K F and Hart G F 1993 A chloroplast DNA deletion located in RNA polymerase genesrpo C2 in CMS lines of sorghum;Mol. Gen. Genet. 236 251 -259

    Article  CAS  PubMed  Google Scholar 

  • Crouzillat D, Gentzbittel L, Canal de la, Vaury C, Perrault A, Nicolas P and Ledoigt G 1989 Properties and nucleotide sequence of a mitochondrial plasmid from sunflower;Curr. Genet. 15 283–289

    Article  CAS  PubMed  Google Scholar 

  • Crouzillat D, Leroy P, Perrault A and Ledoigt G 1987 Molecular analysis of mitochondrial genome ofHelianthus annuus in relation to cytoplasmic male sterility and philogeny;Theor. Appl. Genet. 74 773–780

    Article  CAS  PubMed  Google Scholar 

  • Dawson A J, Hodge T P, Isaac P, Leaver C J and Lonsdale D M 1986a Locations of the genes for cytochrome oxidase subunit I and I, apocytochrome b, alpha-subunit of the F1-ATPase and ribosomal genes on the mitochondrial genome of maize;Curr. Genet. 10 561–564

    Article  CAS  Google Scholar 

  • Dawson A J, Jones V P, Dewey R E, Levings III C S and Timothy D H 1986b Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male sterile cytoplasm;Cell 44 439–449

    Article  Google Scholar 

  • Dawson A J, Jones V P and Leaver C J 1984 The apocytochrome b gene in maize mitochondria does contain introns and is preceeded by a potential ribosome binding site;EM BO J. 3 2107–2113

    Article  CAS  Google Scholar 

  • Dewey R E, Schuster A M, Levings III C S and Timothy D H 1985 Nucleotide sequence of F0-ATPase proteolipid (subunit 9) gene of maize mitochondria;Proc. Natl. Acad. Sci. USA 82 1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Douce R 1985Mitochondria in higher plants: Structure, function and biogenesis (Orlando, Florida: Academic Press)

    Google Scholar 

  • Duvick D N 1965 Cytoplasmic pollen sterility in corn;Adv. Genet. 13 1–56

    Article  Google Scholar 

  • Edwardson J R, Bond D A and Christie R G 1976 Cytoplasmic sterility factors inVicia faba L;Genetics 82 443–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson L, Grant I and Beversdorf W 1986 Cytoplasmic male sterility in rapeseed(Brassica napus L). 1. Restriction patterns of chloroplast and mitochondrial DNA;Theor. Appl. Genet. 72 145–150

    Article  CAS  PubMed  Google Scholar 

  • Fan Z and Stefansson B R 1986 Influence of temperature on sterility of two cytoplasmic male sterility systems in rape(Brassica napus L);Can. J. Plant Sci. 66 221–227

    Article  Google Scholar 

  • Fauron C M R, Havlik M and Brettell RIS 1990 The mitochondrial genome organization of maize fertile and cms T revertant line is generated through recombination between two sets of repeats;Genetics 124 423–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan P M and Brown G G 1986 Autonomously replicating RNA in mitochondria of maize plants with S-type cytoplasm;Proc. Natl. Acad. Sci. 83 5175–5179

    Article  CAS  PubMed  Google Scholar 

  • Fladung M 1990 Transformation of deploid and tetraploid potato clones withrol C gene ofAgrobacterium rhizogenes and characterization of transgenic plants;Plant Breeding 104 295–304

    Article  Google Scholar 

  • Flavel R 1974 A model for the mechanism of cytoplasmic male sterility in plants with special reference to maize;Plant Sci. Lett. 3 259–263

    Article  Google Scholar 

  • Forde B G, Oliver R J C and Leaver C J 1978 Variation in mitochondrial translation products associated with male sterile cytoplasm in maize;Proc. Natl. Acad. Sci. USA 75 3841–3845

    Article  CAS  PubMed  Google Scholar 

  • Fox T D and Leaver C J 1981 TheZea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons,Cell 26 315–323

    Article  CAS  PubMed  Google Scholar 

  • Frank S A 1989 The evolutionary dynamics of cytoplasmic male sterility;Am. Nat. 133 345–376

    Article  Google Scholar 

  • Grabau E A 1987 Cytochrome oxidase subunit II gene is adjacent to an initiator methionine tRNA gene in soybean mitochondria;Curr. Genet. 11 287–293

    Article  CAS  PubMed  Google Scholar 

  • Grivell L 1983 Mitochondrial DNA;Sci. Am. 248 78–89

    Article  CAS  PubMed  Google Scholar 

  • Hack E and Leaver C J 1983 The alpha-subunit of F1-ATPase is synthesized in the mitochondrion;EMBO J. 2 1783–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hack E and Leaver C J 1984 Synthesis of a dicyclohexyl carodiimide-binding proteolipid by cucumber(Cucumissativus L);Curr. Genet. 8 537–542

    Article  CAS  PubMed  Google Scholar 

  • Hanson M R and Conde M F 1985 Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic—nuclear interactions affecting male fertility in plants;Int. Rev. Cytol. 94 213–267

    Article  CAS  Google Scholar 

  • Hiesel R and Brennicke A 1985 Overlaping reading frames inOenothera mitochondria;FEBS Let. 193 164–163

    Article  CAS  Google Scholar 

  • Heisel R, Schobel W, Schuster W and Brennicke A 1987 The cytochrome oxidase subunit III genes inOenothera mitochondria are transcribed from identical promoter sequences;EMBO J. 6 29–34

    Article  Google Scholar 

  • Horn R, Köhler R H and Zetsche K 1991 A mitochondrial 16 kDa protein associated with cytoplasmic male sterility in sunflower;Plant Mol. Biol 17 29–36

    Article  CAS  PubMed  Google Scholar 

  • Houchins J P, Ginsburg H, Rohrbaugh M, Dale R M K, Hodge T P, Schardl C L and Lonsdale D M 1986 DNA sequence analysis of a 5.27 kb direct repeat occurring adjacent to the regions of S-episome homology in maize mitochondria;EMBO J. 5 2781–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaac P G, Brennicke A, Dunbar S M and Leaver C J 1985a The mitochondrial genome of fertile maize(Zea mays L) contains two copies of the gene encoding the alpha-subunit of the F1-ATPase;Curr. Genet. 10 321–328

    Article  CAS  PubMed  Google Scholar 

  • Isaac P G, Jones V P and Leaver C J 1985b The maize cytochrome c oxidase subunit I gene sequence, expression and rearrangement in cytoplasmic male sterile plants;EMBO J. 4 1617–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ise W, Halker H and Weiss H 1985 Mitochondrial translation of subunits of the rotenone-sensitive NADH: ubiquinone reductase inNeurospora crassa;EMBO J. 4 2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johns C, Lu M, Lyznik A and Mackenzie S 1992 A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants;Plant Cell 4 435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadowaki K, Suzuki T and Kozama S 1990 A chimeric gene containing the 5′-portion ofatp6 is associated with cytoplasmic male sterility of rice;Mol Gen. Genet. 224 10–16

    Article  CAS  PubMed  Google Scholar 

  • Kemble R J and Bedbrook J R 1980 Low molecular weight circular and linear DNA in mitochondria from normal and male sterileZea mays cytoplasm;Nature (London) 284 565–566

    Article  CAS  Google Scholar 

  • Kemble R J, Gunn R E and Flavell R B 1983a Mitochondrial DNA variations in races of maize indigenous to Mexico;Theor. Appl Genet. 65 129–144

    Article  CAS  PubMed  Google Scholar 

  • Kemble R J, Mans R, Gabay-Laughman S and Laughman J R 1983b Sequence homologies to episomal mitochondrial DNAs in the maize nuclear genome;Nature (London) 304 744–747

    Article  CAS  Google Scholar 

  • Kim B D, Mans R J, Conde M F, Pring D R and Levings III C S 1982 Physical mapping of homologuous segments of mitochondrial episomes from S-male sterile maize;Plasmid 7 1–14

    Article  CAS  PubMed  Google Scholar 

  • Kohler R H, Horn R, LossI A and Zetsche K 1991 Cytoplasmic male sterility in sunflower is correlated with a new open reading frame withatpA gene;Mol Gen. Genet. 227 369–376

    Article  CAS  PubMed  Google Scholar 

  • Laughman J R and Gabay-Laughman S J 1983 Cytoplasmic male sterility in maize;Annu. Rev. Genet. 17 27–43

    Article  Google Scholar 

  • Leaver C J and Gray M W 1982 Mitochondrial genome organization and expression in higher plants,Ann. Plant. Physiol. 33 373–402

    Article  CAS  Google Scholar 

  • Lefebvre A, Scalla R and Pfeifer P 1990 Double stranded RNA associated with the 447 cytoplasmic male sterility inVicia faba is packaged together with it replicase in cytoplasmic membraneous vesicles;Plant Mol Biol. 14 477–490

    Article  CAS  PubMed  Google Scholar 

  • Levings C S 1990 The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility;Science 250 942–947

    Article  CAS  PubMed  Google Scholar 

  • Levings III C S and Brown G G 1989 Molecular biology of the plant mitochondria;Cell 56 171–179

    Article  CAS  PubMed  Google Scholar 

  • Levings III C S and Dewey R E 1988 Molecular studies of cytoplasmic male sterility in maize;Philos. Trans. R. Soc. London B319 177–185

    Article  Google Scholar 

  • Levings C S and Sederoff R R 1983 Nucleotide sequence of the S2 mitochondrial DNA from the S cytoplasm of maize;Proc. NatlAcad. Sci. USA 80 4055–4059

    Article  CAS  Google Scholar 

  • Lonsdale D M 1984 A review of the structure and organization of the mitochondrial genome of higher plants;Plant Mol Biol. 3 201–206

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale D M 1985 Movement of genetic material between the chloroplast and mitochondrion in higher plants; inPlant gene research (eds) B Hohn and E S Dennis (Wien, New Yale: Springer) Vol. 2, pp 1–50

    Google Scholar 

  • Lonsdale D M 1987a The molecular biology and genetic manipulation of the cytoplasm of higher plants; inGenetic engineering (ed.) P W J Rigby (London: Academic Press) Vol. 6, pp 47–102

    Google Scholar 

  • Lonsdale D M 1987b The physical and genetic map of mitochondrial genome from WF9-N fertile cytoplasm;Maize Genet. Coop. Newsl. 61 148–149

    Google Scholar 

  • Lonsdale D M, Hodge T P and Fauron C M R 1984 The physical map and organization of the mitochondrial genome from fertile cytoplasm of maize;Nucleic Acids Res. 12 9249–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makaroff C A, Apel I J and Palmer J D 1989 theatp-6 coding region has been disrupted and a novel reading frame generated in mitochondrial genome of cytoplasmic male sterile radish;J, Biol Chem. 264 11706–11713

    CAS  Google Scholar 

  • Makaroff C A, Apel I J and Palmer J D 1990 Characterization of radish mitochondrialatpA: influence of nuclear background and transcription ofatpA associated sequences and relationship with male sterility;Plant Mol Biol 15 735–746

    Article  CAS  PubMed  Google Scholar 

  • Makaroff C A, Apel I J and Palmer J D 1991 The role ofcox I associated repeated sequences in plant mitochondrial DNA rearrangements and radish cytoplasmic male sterility;Curr. Genet. 19 183–190

    Article  CAS  PubMed  Google Scholar 

  • Makaroff C A and Palmer J D 1988 Mitochondrial DNA rearrangements and transcriptional alteration in the male sterile cytoplasm ofOguraradish;Mol Cell Biol 8 1474–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani C, Beuekeleer M D, Truettner J, Leemans J and Goldberg R B 1990 Induction of male sterility in plants by a chimeric ribonuclease gene;Nature (London) 347 737–741

    Article  CAS  Google Scholar 

  • Mariani C, Block M D, Goldberg R B, Greef W D and Leemans J 1992 A chimeric ribonuclease inhibitor gene restores fertility to male sterile plants;Nature (London) 357 384–387

    Article  CAS  Google Scholar 

  • Mikami T, Harada T and Kinoshita T 1986 Heterogeneity of circular mitochondrial DNA molecules from sugar beet with normal and male sterile cytoplasms;Curr. Genet. 10 695–700

    Article  CAS  PubMed  Google Scholar 

  • Moon E, Kao T H and Wu R 1985 Pea cytochrome oxidase subunit II gene has no intron and generates two mRNA transcripts with different 5′-terrmini;Nucleic Acids Res. 13 3195–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton K J 1988 Plant mitochondrial genomes: organization, expression and variation;Annu. Rev. Plant Physiol Plant. Mol Biol. 39 503–532

    Article  CAS  Google Scholar 

  • Nivison H T and Hanson M R 1989 Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia;Plant Cell 1 1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura H 1968 Studies on the new sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seed;Mem. Fac. Agric. Kagoshima Univ. 6 39–78

    Google Scholar 

  • Paillard M, Sederof R R and LevingsIII C S 1985 Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize;EM BO J. 4 1125–1128

    Article  CAS  Google Scholar 

  • Palmer J D 1990 Contrasting models and tempos of genome evolution in land plant organelles;Trends Genet. 6 115–120

    Article  CAS  PubMed  Google Scholar 

  • Palmer J D, Shields C R, Cohn D B and Orton T J 1983 An unusual mitochondrial DNA plasmid in the genus Brassica,Nature (London) 301 725–728

    Article  CAS  Google Scholar 

  • Palmer J D and Shields C R 1984 Tripartite structureof Brassica campestris mitochondrial genome;Nature (London) 307 437–440

    Article  CAS  Google Scholar 

  • Parks T D, Dougherty W J, Levings III C S and Timothy D H 1985 Identification of an aspartate transfer RNA in maize mitochondrial DNA;Curr. Genet. 9 517–519

    Article  CAS  PubMed  Google Scholar 

  • Pour A K, Gracen V E and Everett H L 1981 Genetics of fertility restoration in the C group of cytoplasmic male sterility in maize;Genetics 98 379–388

    Google Scholar 

  • Pring D R, Levings C S, Hu W W L and Timothy D H 1977 Unique DNA associated with mitochondria in the S type cytoplasm of male sterile maize,Proc. Natl Acad. Sci. USA 74 2904–2908

    Article  CAS  PubMed  Google Scholar 

  • Quetier F, Lejeune B, Delorme S and Falconet D 1985 Molecular organization and expression of the mitochondrial genome of higher plants; inEncyclopedia of Plant Physiology (eds) R Douce and D A Day (Berlin: Springer-Verlag) Vol.18, pp 25–36

    Google Scholar 

  • Rathburn H and Hedgcoth C 1991 A chimeric open reading frame ofcoxI mitochondrial DNA from cytoplasmic male sterile wheat;Plant Mol Biol. 16 909–912

    Article  CAS  PubMed  Google Scholar 

  • Rathburn H and Hedgcoth C 1992 Maize S1 and S2 sequences in wheat mitochondrial DNA;Plant Sci. 85 151–160

    Article  CAS  Google Scholar 

  • Rogers H J, Buck K W and Brasier C M 1987 A mitochondrial target for double stranded RNA in diseased isolates of the fungus that causes Dutch elm disease;Nature (London) 329 558–560

    Article  CAS  Google Scholar 

  • Rothenberg M, Boeshore M L, Hanson M R and Izhar S 1985 Intergenic recombination of mitochondrial genomes in a somatic hybrid plant;Curr. Genet. 9 615–618

    Article  CAS  Google Scholar 

  • Rottmann W H, Brears T, Hodge T P and Lonsdale D M 1987 A mitochondrial gene is lostvia homologuous recombination during reversion of cms T maize to fertility;EMBO J. 6 1541–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SchardI C L, Lonsdale D M, Pring D R and Rose K R 1984 Linearization of maize mitochondrial chromosome by recombination with linear episomes;Nature (London) 310 292–296

    Article  Google Scholar 

  • SchardI C L, Pring D R and Lonsdale DM 1985 Mitochondrial DNA rearrangements associated with fertile revertants of S-type male sterile maize;Cell 43 361–368

    Article  Google Scholar 

  • Schmulling T, Schell J and Spena A 1988 Single genes fromAgrobacterium rhizogenes influence plant development;EMBO J. 7 2621–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmulling T, Rohrig H, Pilz S, Waiden R and Schell J 1993 Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants;Mol Gen. Genet. 237 385–394

    CAS  PubMed  Google Scholar 

  • Schuster W and Brennicke A 1987 Plastid nuclear and reverse transcriptase sequences in the mitochondrial genome ofOenothera: is genetic information transferred between organelles via RNA?;EMBOJ. 6 2857–2863

    Article  CAS  Google Scholar 

  • Schuster W, Heisel R, Isaac P G, Leaver C J and Brennicke A 1986 Transcript termini of messenger RNAs in higher plant mitochondria;Nucleic Acids Res. 14 5943–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott N S and Timmis T N 1984 Homologies between nuclear and plastid DNA in spinach;Theor. Appl. Genet. 67 279–288

    Article  CAS  PubMed  Google Scholar 

  • Senda M, Harada T, Mikami T, Sugiura M and Kinoshita T 1991 Genomic organization and sequence analysis of the cytochrome oxidase subunit II gene from normal and male sterile mitochondria in sugar beet;Curr. Genet. 19 175–181

    Article  CAS  PubMed  Google Scholar 

  • Sicullela L and Palmer J D 1988 Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower, CMS associated with alteration in structure and transcription ofatpA gene;Nucleic Acid Res. 16 3787–3799

    Article  Google Scholar 

  • Singh M and Brown G G 1991 Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region;Plant Cell 3 1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisco P H, Arenal F G, Zaitlin M, Earle E D and Gracen V 1984 LBN, a male sterile cytoplasm of maize contains two doble stranded RNAs,Plant Sci. Lett. 34 127–134

    Article  CAS  Google Scholar 

  • Small I, Sufolk R and Leaver C J 1989 Evolution of plant mitochondrial genomes via substoichiometric intermediates;Cell 58 69–76

    Article  CAS  PubMed  Google Scholar 

  • Spencer D F, Bonen L and Gray M W 1981 Primary sequence of wheat mitochondrial 5S ribosomal ribonucleic acid: functional and evolutionary implications;Biochemistry 20 4022–4029

    Article  CAS  PubMed  Google Scholar 

  • Spencer D F, Schnare M N and Gray M W 1984 Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria andEscherichia coli;Proc. Natl. Acad. Sci. USA 81 493–497

    Article  CAS  PubMed  Google Scholar 

  • Stern D B and Lonsdale D M 1982 Mitochondrial and chloroplast genomes of maize have a 12 kilobase DNA sequence in common;Nature (London) 299 698–702

    Article  CAS  Google Scholar 

  • Stern D B, Bang A G and Thompson W F 1986 The watermelon mitochondrialurf-1 gene: evidence for a complex structure;Curr. Genet. 10 857–869

    Article  CAS  PubMed  Google Scholar 

  • Stern D B, Dyer T A and Lonsdale D M 1982 Organization of the mitochondrial ribosomal RNA genes of maize;Nucleic Acids Res. 10 3333–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern D B and Palmer J D 1984 Extensive and vide spread homologies between mitochondrial DNA and chloroplast DNA in plants;Proc. Natl. Acad. Sci. USA 81 1946–1950

    Article  CAS  PubMed  Google Scholar 

  • Stern D B and Palmer J D 1986 Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping and locations of transposed chloroplast chloroplast DNA sequences;Nucleic Acids Res. l4 5651–5666

    Article  Google Scholar 

  • Timmis J N and Scott N S 1983 Sequence homology between spinach nuclear and chloroplast genomes,Nature (London) 305 65–67

    Article  CAS  Google Scholar 

  • Wahleithner J A and Wolstenholme D R 1987 Ribosome protein S14 in broad bean mitochondrial DNA;Nucleic Acids. Res. 16 6897–6913

    Article  Google Scholar 

  • Wallace D C, Singh G, Lott M T, Hodge J A, Schurr T G, Lezza A M S, Elas II L J and Nikoskelainen E K 1988 Mitochondrial DNA mutation associated with Leber’s hereditary optic nueropathy;Science 242 1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Ward B L, Anderson R S and Bendich A J 1981 The mitochondrial genome is large and variable in a family of plants(Cucurbitaceae);Cell 25 793–803

    Article  CAS  PubMed  Google Scholar 

  • Whisson D L and Scott N S 1985 Nuclear and mitochondrial DNA have sequence homology with a chloroplast gene;Plant Mol Biol. 4 267–273

    Article  CAS  PubMed  Google Scholar 

  • Williams M E and Levings III C S 1992 Molecular biology of cytoplasmic male sterility, inPlant breeding reviews (ed.) J Janick (New York: John Wiley) Vol. 10, pp 23–51

    Google Scholar 

  • Wintz H, Grienenberger J M, Weil J H and Lonsdale D M 1988 Location of two tRNA genes and a tRNA pseudogene in the maize mitochondrial genome: evidence for the transcription of a chloroplast gene in mitochondria;Curr. Genet. 13 247–254

    Article  CAS  PubMed  Google Scholar 

  • Wissinger B, Heisel R, Schuster W and Brennicke A 1988 The NADH-dehydrogenase subunit 5 gene inOenothera mitochondria contains two introns and is cotranscribed with the 5S rRNA gene;Mol. Gen, Genet. 212 56–65

    Article  CAS  Google Scholar 

  • Witt U, Hansen S, Albaum M and Abel WO 1991 Molecular analysis of the CMS inducingPolima cytoplasmof Brassica napus;Curr. Genet. 19 323–327

    Article  CAS  Google Scholar 

  • Young E G and Hanson M R 1987 A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated;Cell 50 41–49

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, C.K.K. Mitochondrial genome organization and cytoplasmic male sterility in plants. J. Biosci. 18, 407–422 (1993). https://doi.org/10.1007/BF02702998

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702998

Keywords

Navigation