Skip to main content
Log in

ZnO spintronics and nanowire devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnO is a very promising material for spintronics applications, with many groups reporting room-temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during pulsed laser deposition (PLD), we find an inverse correlation between magnetization and electron density as controlled by Sn-doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for ferromagnetism include the bound magnetic polaron model or exchange that is mediated by carriers in a spin-split impurity band derived from extended donor orbitals. The progress in ZnO nanowires is also reviewed. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for microlasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ∼−3 V, and a maximum transconductance of 0.3 mS/mm. Under ultraviolet (UV) illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ∼5 mS/mm. The channel mobility is estimated to be ∼3 cm2/Vss, comparable to that for thin film ZnO enhancement mode metal-oxide semiconductor field effect transistors (MOSFETs), and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination. The Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25°C, very low reverse currents, and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25°C to 150°C, the resistivity of nanorods treated in H2 at 400°C prior to measurement showed an activation energy of 0.089 eV and was insensitive to ambient used. By contrast, the conductivity of nanorods not treated in H2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors. Sensitive pH sensors using single ZnO nanowires have also been fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. von Molnar and D. Read,Proc. IEEE 91, 715 (2003).

    Article  Google Scholar 

  2. H. Ohno,J. Vac. Sci. Technol. B 18, 2039 (2000).

    Article  CAS  Google Scholar 

  3. T. Dietl,Semicond. Sci. Technol. 17, 377 (2002).

    Article  CAS  Google Scholar 

  4. S.J. Pearton et al.,J. Appl. Phys. 93, 1 (2003).

    Article  CAS  Google Scholar 

  5. S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, and J.D. Budai,Mater. Sci. Eng. R40, 137 (2003).

    CAS  Google Scholar 

  6. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,Science 287, 1019 (2000).

    Article  CAS  Google Scholar 

  7. K. Sato and H. Katayama-Yoshida,Semicond. Sci. Technol. 17, 367 (2002).

    Article  CAS  Google Scholar 

  8. W. Prellier, A. Fouchet, B. Mercey, and J. Phys,Condensed Matter 15, R1583 (2003).

  9. T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, and M. Kawasaki,Appl. Surf. Sci. 131, 453 (2004).

    Google Scholar 

  10. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma,Science 291, 854 (2001).

    Article  CAS  Google Scholar 

  11. Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X.J. Fan, T. Hasegawa, T. Fukumura, M. Kawasaki, S.Y. Koshihara, and H. Koinuma,Jpn. J. Appl. Phys. 40, L1204 (2001).

    Google Scholar 

  12. K. Sato and H. Katayama-Yoshida,Jpn. J. Appl. Phys. 39, L555 (2000).

    Google Scholar 

  13. K. Ueda, H. Tabata, and T. Kawai,Appl. Phys. Lett. 79, 988 (2001).

    Article  CAS  Google Scholar 

  14. S.G. Yang, A.B. Pakhomov, S.T. Hung, and C.Y. Wong,IEEE Trans. Magn. 38, 2877 (2002).

    Article  CAS  Google Scholar 

  15. N. Wakano, Y. Fujimura, N. Morinaga, A. Abe, N. Ahida, and T. Ito,Physica E 10, 260 (2001).

    Article  CAS  Google Scholar 

  16. T. Fukumura, Z.W. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki,Appl. Phys. Lett. 75, 3366 (1999).

    Article  CAS  Google Scholar 

  17. M. Berciu and R.N. Bhatt,Phys. Rev. Lett. 87, 108203 (2001).

    Article  Google Scholar 

  18. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito,Physica C 10, 260 (2001).

    CAS  Google Scholar 

  19. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki,Appl. Phys. Lett. 75, 3366 (1999).

    Article  CAS  Google Scholar 

  20. S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, and S. Cho,Appl. Phys. Lett. 80, 4561 (2002).

    Article  CAS  Google Scholar 

  21. D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, and R.G. Wilson,Appl. Phys. Lett. 82, 239 (2003).

    Article  CAS  Google Scholar 

  22. D.P. Norton et al.,Appl. Phys. Lett. 83, 2294 (2003).

    Article  Google Scholar 

  23. K. Sato and H. Katayama-Yoshida,Mater. Res. Soc. Symp. Proc. 666, F4.6.1 (2001).

  24. S.R. Shinde et al.,Phys. Rev. B: Condens. Matter Mater. Phys. 67, 115211 (2003).

    Google Scholar 

  25. A. Punnoose, M.S. Seedra, W.K. Park, and J.S. Moodera,J. Appl. Phys. 93, 7867 (2003).

    Article  CAS  Google Scholar 

  26. H. Nakagawa and H. Katayama-Yoshida,Jpn. J. Appl. Phys. 40, L1355 (2001).

    Google Scholar 

  27. M. Berciu and R.N. Bhatt,Physica B 312/313, 815 (2002).

    Article  Google Scholar 

  28. A.C. Durst, R.N. Bhatt, and P.A. Wolff,Phys. Rev. B: Condens. Matter Mater. Phys. 65, 235205 (2002).

    Google Scholar 

  29. J.-H. Kim, H. Kim, D. Kim, Y.-E. Ihm, and W.-K. Choo,J. Appl. Phys. 92, 6066 (2002).

    Article  CAS  Google Scholar 

  30. H. Saeki, H. Tabata, and T. Kawai,Solid State Commun. 120, 439 (2001).

    Article  CAS  Google Scholar 

  31. Y.M. Cho, W.-K. Choo, H. Kim, D. Kim, and Y.-E. Ihm,Appl. Phys. Lett. 80, 3358 (2002).

    Article  CAS  Google Scholar 

  32. H.J. Lee, S.Y. Jeong, C.R. Cho, and C.H. Park,Appl. Phys. Lett. 81, 4020 (2002).

    Article  CAS  Google Scholar 

  33. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson, and G.A. Gehring,Nature Mater. 2, 673 (2003).

    Article  CAS  Google Scholar 

  34. S.J. Hahn, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong, and K.W. Rhie,Appl. Phys. Lett. 81, 4212 (2002).

    Article  Google Scholar 

  35. K. Rode, A. Anane, R. Mattana, J.-P. Contour, O. Durand, and R. LeBourgeois,J. Appl. Phys. 93, 7676 (2003).

    Article  CAS  Google Scholar 

  36. N. Theordoropoulou et al. (to be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearton, S.J., Norton, D.P., Heo, Y.W. et al. ZnO spintronics and nanowire devices. J. Electron. Mater. 35, 862–868 (2006). https://doi.org/10.1007/BF02692541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02692541

Key words

Navigation