Skip to main content
Log in

The Influence of β-Arrestin-2 Gene Knockout in Mice on Survival of Cultured Astrocytes Exposed to Thrombin and on the Cerebral Thrombosis Aftereffects In Vivo

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Thrombin is a multifunctional serine protease that attracts the attention of many researchers in particular in connection with a wide range of its effects in the nervous tissue. It is known that the main thrombin receptor is a protease-activated type 1 receptor, the functional activity of which is associated with adapter protein β-arrestin-2. Here we assessed potential involvement of β-arrestin-2 in the thrombin toxicity both in vitro and in vivo using gene knockout mice. It was found that thrombin induced dose-dependent cell death of cultured β-arrestin-2–/– astrocytes 48 h after the exposure. In contrast, thrombin did not exert any effects on the survival of astrocytes from wild-type animals. The in vivo study showed that β-arrestin-2 gene knockout did not alter the severity of the focal photoinduced cerebral ischemia aftereffects, which could involve additional cell types and molecular mechanisms in nervous tissue damage. Our findings demonstrate for the first time the necessity of β-arrestin-2 for the survival of mouse astrocytes under the toxic action of thrombin. At the CNS level, however, further studies are required to determine the key targets of this protease in each cell types of the nervous tissue and to clarify the role of β-arrestin signaling in neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Suo Z., Citron B.A., Festoff B.W. 2004. Thrombin: A potential proinflammatory mediator in neurotrauma and neurodegenerative disorders. Curr. Drug Targets – Inflamm. Allergy.3, 105–114.

    Article  CAS  Google Scholar 

  2. Gingrich M.B., Traynelis S.F. 2000. Serine proteases and brain damage – is there a link? Trends Neurosci.23, 399–407.

    Article  CAS  Google Scholar 

  3. Gorbacheva L.R., Kiseleva E.V., Savinkova I.G., Strukova S.M. 2017. New conception of the influence of hemostatic proteases on inflammation, neurotoxicity, and tissue regeneration. Biochem.82, 1018–1032.

    Google Scholar 

  4. Ramachandran R., Hollenberg M. 2008. Proteinases and signalling: Pathophysiological and therapeutic implications via PARs and more. Br. J. Pharmacol.153, 263–282.

    Article  Google Scholar 

  5. Traynelis S.F., Trejo J. 2007. Protease-activated receptor signaling: New roles and regulatory mechanisms. Curr. Opin. Hematol.14, 230–235.

    Article  CAS  Google Scholar 

  6. Ossovskaya V.S., Bunnett N.W. 2004. Protease-activated receptors: Contribution to physiology and disease. Physiol. Rev.84, 579–621.

    Article  CAS  Google Scholar 

  7. Roy R.V., Ardeshirylajimi A., Dinarvand P., Yang L., Rezaie A.R. 2016. Occupancy of human EPCR by protein C induces β-arrestin-2 biased PAR1 signaling by both APC and thrombin. Blood.128, 1884–1893.

    Article  CAS  Google Scholar 

  8. Griffin J.H., Zlokovic B. V, Mosnier L.O. 2015. Activated protein C: Biased for translation. Blood.125, 2898–2908.

    Article  CAS  Google Scholar 

  9. Reiter E., Ahn S., Shukla A.K., Lefkowitz R.J. 2012. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol.52, 179–199.

    Article  CAS  Google Scholar 

  10. Whalen E.J., Rajagopal S., Lefkowitz R.J. 2011. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol.17, 126–139.

    Article  CAS  Google Scholar 

  11. Premont R.T., Gainetdinov R.R. 2007. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol.69, 511–534.

    Article  CAS  Google Scholar 

  12. Violin J.D., Lefkowitz R.J. 2007. β-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci.28, 416–422.

    Article  CAS  Google Scholar 

  13. Sofroniew M.V., Vinters H.V. 2010. Astrocytes: Biology and pathology. Acta Neuropathol.119, 7–35.

    Article  Google Scholar 

  14. Bohn L.M., Lefkowitz R.J., Gainetdinov R.R., Peppel K., Caron M.G., Lin F.-T. 1999. Enhanced morphine analgesia in mice lacking β-arrestin-2. Science.286, 2495–2498.

    Article  CAS  Google Scholar 

  15. Ivanova A.E., Gorbacheva L.R., Strukova S.M., Pinelis V.G., Reiser G. 2014. Activated protein C and thrombin participate in the regulation of astrocyte functions. Biochem.8, 50–59.

    Google Scholar 

  16. Lee J.-K., Park M.-S., Kim Y.-S., Moon K.-S., Joo S.-P., Kim T.-S., Kim J.-H., Kim S.-H. 2007. Photochemically induced cerebral ischemia in a mouse model. Surg. Neurol.67, 620–625.

    Article  Google Scholar 

  17. Franklin K.B., Paxinos G. 2001. Mouse brain in stereotaxic coordinates. 2nd ed. London, Acad. Press.

    Google Scholar 

  18. Baskin Y.K., Dietrich W.D., Green E.J. 2003. Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J. Neurosci. Methods.129, 87–93.

    Article  Google Scholar 

  19. Benedek A., Móricz K., Jurányi Z., Gigler G., Lévay G., Hársing L., Mátyus P., Szénási G., Albert M. 2006. Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res.6, 159–164.

    Article  Google Scholar 

  20. Pialat J.-B., Cho T.-H., Beuf O., Joye E., Moucharaffie S., Langlois J.-B., Nemoz C., Janier M., Berthezene Y., Nighoghossian N., Desvergne B., Wiart M. 2007. MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice. NMR Biomed.6, 335–342.

    Article  Google Scholar 

  21. Kang H.-M., Sohn I., Park C. 2015. Use of indocyanine green for optical analysis of cortical infarcts in photothrombotic ischemic brains. J. Neurosci. Methods.248, 46–50.

    Article  CAS  Google Scholar 

  22. Kim G.W., Lewen A., Copin J.-C., Watson B.D., Chan P.H. 2001. The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood–brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience. 105, 1007–1018.

    Article  CAS  Google Scholar 

  23. Schroeter M., Jander S., Stoll G. 2002. Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: Characterization of inflammatory responses. J. Neurosci. Methods.117, 43–49.

    Article  Google Scholar 

  24. Cotrina M.L., Lou N., Tome-Garcia J., Goldman J., Nedergaard M. 2017. Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience. 343, 483–494.

    Article  CAS  Google Scholar 

  25. Wang H., Ubl J.J., Reiser G. 2002. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia.37, 53–63.

    Article  CAS  Google Scholar 

  26. Watson B.D., Dietrich W.D., Busto R., Wachtel M.S., Ginsberg M.D. 1985. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol.17, 497–504.

    Article  CAS  Google Scholar 

  27. Xi G., Reiser G., Keep R.F. 2003. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: Deleterious or protective? J. Neurochem.84, 3–9.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank D.A. Gorbachev (Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences) and V.S. Vyushkov (Moscow Lomonosov State University) for the help in mouse genotyping and interpretation of the obtained data. The work was supported by the Russian Foundation for Basic Research (project no. 18-34-00977).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Galkov.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with Directive 2010/63/EU of the European Parliament and the Council of the European Union. Experimental protocols were approved by the Bioethics Committee of Moscow Lomonosov State University (protocol no. 2018-10-25-93-0-3).

Additional information

Translated by M. Galkov

Abbreviations: APC, activated protein C; BBB, blood–brain barrier; GPCRs, G-protein-coupled receptors; GRKs, kinases of G-protein-coupled receptors; MRI, magnetic resonance imaging; PARs, protease-activated receptors; PC, protein C; PCR, polymerase chain reaction; TTC, 2,3,5-triphenyltetrazolium chloride.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkov, M.D., Ivanova, A.E., Gulyaev, M.V. et al. The Influence of β-Arrestin-2 Gene Knockout in Mice on Survival of Cultured Astrocytes Exposed to Thrombin and on the Cerebral Thrombosis Aftereffects In Vivo. Biochem. Moscow Suppl. Ser. A 14, 17–23 (2020). https://doi.org/10.1134/S1990747819060060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819060060

Keywords:

Navigation