Skip to main content
Log in

Brain tumor formation in tuberous sclerosis depends on erk activation

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Tuberous sclerosis (TS) is an autosomal dominant disease associated with the formation of usually benign tumors or hamartomas. The disease is connected with upregulation of mammalian target of rapamycin, central regulator of protein translation, which is usually regarded to be activated by Akt kinase. Here, we show for the first time that in all four brain lesions and one angiomyolipoma from TS patients both extracellular signal-regulated kinase (Erk) and p90 ribosomal S6 kinase 1 activation as well as Erk-dependent phosphorylation of p70 ribosomal S6 kinase 1 are markedly elevated whereas Akt, participating in the classical pathway of mammalian target of rapamycin activation is not always activated. Erk activation is also present in TS-derived cell lines. Importantly, Erk inhibition leads to the decrease of proliferation potential of such lines. These results show that Erk is specifically implicated in the pathogenesis of hamartomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dan H. C., Sun M., Yang L., et al. (2002) Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem. 277, 35,364–35,370.

    Google Scholar 

  • Dong J. and Pan D. (2004) Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev. 18, 2479–2484.

    Article  PubMed  CAS  Google Scholar 

  • Gera J. F., Mellinghoff I. K., Shi Y., et al. (2004) AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. 279, 2737–2746.

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan B., Mizesko M. C., Miller M. S., et al. (2003) Tuberous sclerosis-associated neoplasms express activated p42/44 mitogen-activated protein (MAP) kinase, and inhibition of MAP kinase signaling results in decreased in vivo tumor growth. Clin. Cancer Res. 9, 3469–3475.

    PubMed  CAS  Google Scholar 

  • Han S., Santos T. M., Puga A., et al. (2004) Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions. Cancer Res. 64, 812–816.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann W., Koch A., Brune H., et al. (2005) Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am. J. Pathol. 166, 1153–1162.

    PubMed  CAS  Google Scholar 

  • Henske E. P., Wessner L. L., Golden J., et al. (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am. J. Pathol. 151, 1639–1647.

    PubMed  CAS  Google Scholar 

  • Inoki K., Li Y., Zhu T., Wu J., and Guan K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657.

    Article  PubMed  CAS  Google Scholar 

  • Jansen F. E., Notenboom R. G., Nellist M., et al. (2004) Differential localization of hamartin and tuberin and increased S6 phosphorylation in a tuber. Neurology 63, 1293–1295.

    PubMed  CAS  Google Scholar 

  • Johannessen C. M., Reczek E. E., James M. F., Brems H., Legius E., and Cichowski K. (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. USA 102, 8573–8578.

    Article  PubMed  CAS  Google Scholar 

  • Jozwiak J. (2006) Hamartin and tuberin: working together for tumour suppression. Int. J. Cancer 118, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Jozwiak J. and Jozwiak S. (2005) Giant cells: contradiction to two-hit model of tuber formation? Cell Mol. Neurobiol. 25, 795–805.

    Article  PubMed  Google Scholar 

  • Jozwiak S., Schwartz R. A., Janniger C. K., and Bielicka-Cymerman J. (2000) Usefulness of diagnostic criteria of tuberous sclerosis complex in pediatric patients. J. Child Neurol. 15, 652–659.

    PubMed  CAS  Google Scholar 

  • Jozwiak S., Dabora S., Kasprzyk-Obara J., Domanska-Pakiela D., and Grajkowska W. (2001) [Tests for loss of heterozygosity in tuberous sclerosis]. Przegl. Lek. 58(Suppl 1), 12–15.

    PubMed  Google Scholar 

  • Kinkl N., Sahel J., and Hicks D. (2001) Alternate FGF2-ERK1/2 signaling pathways in retinal photoreceptor and glial cells in vitro. J. Biol. Chem. 276, 43,871–43,878.

    Article  CAS  Google Scholar 

  • Kinzler K. W. and Vogelstein B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura T., Ogawa W., Sakaue H., et al. (1998) Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol. Cell Biol. 18, 3708–3717.

    PubMed  CAS  Google Scholar 

  • Knowles M. A., Habuchi T., Kennedy W., and Cuthbert-Heavens D. (2003) Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res. 63, 7652–7656.

    PubMed  CAS  Google Scholar 

  • Lehman J. A., Calvo V., and Gomez-Cambronero J. (2003) Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase. J. Biol. Chem. 278, 28,130–28,138.

    CAS  Google Scholar 

  • Liu X., Powlas J., Shi Y., et al. (2004) Rapamycin inhibits Akt-mediated oncogenic transformation and tumor growth. Anticancer Res. 24, 2697–2704.

    PubMed  CAS  Google Scholar 

  • Long X., Lin Y., Ortiz-Vega S., Yonezawa K., and Avruch J. (2005) Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713.

    Article  PubMed  CAS  Google Scholar 

  • Ma L., Chen Z., Erdjument-Bromage H., Tempst P., and Pandolfi P. P. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193.

    Article  PubMed  CAS  Google Scholar 

  • McCoy M. S., Bargmann C. I., and Weinberg R. A. (1984) Human colon carcinoma Ki-ras2 oncogene and its corresponding proto-oncogene. Mol. Cell Biol. 4, 1577–1582.

    PubMed  CAS  Google Scholar 

  • Meikle L., McMullen J. R., Sherwood M. C., et al. (2005) A mouse model of cardiac rhabdomyoma generated by loss of Tsc1 in ventricular myocytes. Hum. Mol. Genet. 14, 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi M. and Takashima S. (2001) Neuropathology of tuberous sclerosis. Brain Dev. 23, 508–515.

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi M., Ikeda K., and Takashima S. (2000) Simultaneous loss of hamartin and tuberin from the cerebrum, kidney and heart with tuberous sclerosis. Acta Neuropathol. (Berl.) 99, 503–510.

    Article  CAS  Google Scholar 

  • Nellist M., Burgers P. C., van den Ouweland A. M., Halley D. J., and Luider T. M. (2005) Phosphorylation and binding partner analysis of the TSC1-TSC2 complex. Biochem. Biophys. Res. Commun. 333, 818–826.

    Article  PubMed  CAS  Google Scholar 

  • Onda H., Lueck A., Marks P. W., Warren H. B., and Kwiatkowski D. J. (1999) Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J. Clin. Invest. 104, 687–695.

    Article  PubMed  CAS  Google Scholar 

  • Potter C. J., Pedraza L. G., and Xu T. (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665.

    Article  PubMed  CAS  Google Scholar 

  • Roux P. P., Ballif B. A., Anjum R., Gygi S. P., and Blenis J. (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA 101, 13,489–13,494.

    Article  CAS  Google Scholar 

  • Tabuchi S., Takigawa H., Oka A., Mizuguchi M., Horie Y., and Watanabe T. (2003) Subependymal giant cell astrocytoma with positive tuberin expression—case report. Neurol. Med. Chir (Tokyo) 43, 616–618.

    Article  Google Scholar 

  • Takahashi D. K., Dinday M. T., Barbara N. M., and Baraban S. C. (2004) Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia 45, 1525–1530.

    Article  PubMed  Google Scholar 

  • Wlodarski P., Kasprzycka M., Liu X., et al. (2005) Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum. Cancer Res. 65, 7800–7808.

    PubMed  CAS  Google Scholar 

  • Zhang Y., Gao X., Saucedo L. J., Ru B., Edgar B. A., and Pan D. (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Wlodarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jozwiak, J., Grajkowska, W., Kotulska, K. et al. Brain tumor formation in tuberous sclerosis depends on erk activation. Neuromol Med 9, 117–127 (2007). https://doi.org/10.1007/BF02685886

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685886

Index Entries

Navigation