Skip to main content
Log in

Experimental and numerical analyses of indentation in finite-sized isotropic and anisotropic rubber-like materials

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Indentation tests perpendicular to the major plane of a material have been proposed as a means to index some of its in-plane mechanical properties. We showed the feasibility of such tests in myocardial tissue and established its theoretical basis with a formulation of small indentation superimposed on a finitely stretched half-space of isotropic materials. The purpose of this study is to better understand the mechanics of indentation with respect to the relative effects of indenter size, indentation depth, and specimen size, as well as the effects of material properties. Accordingly, we performed indentation tests on slabs of silicone rubber fabricated with both isotropic, as well as transversely isotropic, material symmetry. We performed indentation tests in different thickness specimens with varying sizes of indenters, amounts of indentation, and amounts of in-plane stretch. We used finite-element method simulations to supplement the experimental data. The combined experimental and modeling data provide the following useful guidelines for future indentation tests in finite-size specimens: (i) to avoid artifacts from boundary effects, the in-plane specimen dimensions should be at least 15 times the indenter size; (ii) to avoid nonlinearities associated with finite-thickness effects, the thickness-to-radius ratio should be >10 and thickness to indentation depth ratio should be >5; and (iii) we also showed that combined indentation and inplane stretch could distinguish the stiffer direction of a, transversely isotropic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alblas, J. B., and M. Kuipers. Contact problems of a rectangular block on an elastic layer of finite thickness. Part I. The thin layer.Acta Mech. 8:133–145, 1969.

    Article  Google Scholar 

  2. Alblas, J. B., and M. Kuipers. Contact problems of a rectangular block on an elastic layer of finite thickness. Part II. The thick layer.Acta Mech. 9:1–12, 1970.

    Article  Google Scholar 

  3. Alblas, J. B., and M. Kuipers. On the two dimensional problem of a cylindrical stamp pressed into a thin elastic layer.Acta Mech. 9:292–311, 1970.

    Article  Google Scholar 

  4. Batra R. C. Quasistatic indentation of a rubberlike layer by a rigid cylinder. Proceedings of the International Conference on Finite Elements in Computational Mechanics, 1985, pp. 345–357.

  5. Beatty, M. F., and S. A. Usmani. On the indentation of a highly elastic half-space.Q. J. Mech. Appl. Math. 28:47–62, 1975.

    Article  Google Scholar 

  6. Bhattacharya A. K., and W. D. Nix. Finite element simulation of indentation experiments.Int. J. Solids Struct. 24:881–891, 1988.

    Article  Google Scholar 

  7. Burnham, N. A., and R. J. Colton. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope.J. Vac. Sci. Technol. 7:2906–2913, 1989.

    Article  CAS  Google Scholar 

  8. Chew, P. H., J. D. Humphrey, and F. C. P. Yin. Regional finite deformations of the in situ canine pericardium.Am. J. Physiol. 264:H97-H103, 1993.

    PubMed  CAS  Google Scholar 

  9. Downs, J., H. R. Halperin, J. Humphrey, and F. C. P. Yin. An improved video-based computer tracking system for soft biomaterials testing.IEEE Trans. Biomed. Eng. 37:903–907, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Halperin, H. R., P. H. Chew, M. L. Weisfeldt, K. Sagawa, J. D. Humphrey, and F. C. P. Yin. Transverse stiffness: a method for estimation of myocardial wall stress.Circ. Res. 61:695–703, 1987.

    PubMed  CAS  Google Scholar 

  11. Hertz, H.. Über den kontakt elastischer korper.J. Reine Angew Mathematik 92:156–188, 1881.

    Google Scholar 

  12. Humphrey, J. D., H. R. Halperin, and F. C. P. Yin. Small indentation superimposed on a finite equibiaxial stretch: implications for cardiac mechanics.J. Appl. Mech. 59:1108–1111, 1991.

    Google Scholar 

  13. Humphrey, J. D., R. K. Strumpf, and F. C. P. Yin. Determination of a constitutive relation for passive myocardium. I. A new functional form.J. Biomech. Eng. 112:333–339, 1990.

    PubMed  CAS  Google Scholar 

  14. Humphrey, J. D., R. K. Strumpf, and F. C. P. Yin. Determination of a constitutive relation for passive myocardium. II. Parameter estimation.J. Biomech. Eng. 112:340–346, 1990.

    PubMed  CAS  Google Scholar 

  15. Karduna, A. Transverse Stiffness and Constitutive Law for Elastomers and Fiber-Reinforced Elastomers. Baltimore: Johns Hopkins University, M.S. Dissertation, 1989.

    Google Scholar 

  16. Lanir, Y., S. Sikstein, A. Hartzshtark, and V. Manny.In-vivo indentation of human skin.J. Biomech. Eng. 112:63–69, 1990.

    PubMed  CAS  Google Scholar 

  17. Matsuura T., and J. Mansour. Indentation testing of rabbit distal femoral cartilage.ASME Biomech. Symp. 120:157–160, 1991.

    Google Scholar 

  18. Radmacher, M., M. Fritz, and P. K. Hansma. Imaging soft samples with the atomic force microscope: gelatin in water and propanol.Biophys. J. 69:264–270, 1995.

    PubMed  CAS  Google Scholar 

  19. Resar, J. R., J. Z. Livingston, and F. C. P. Yin. In-plane myocardial wall stress is not the primary determinant of coronary systolic flow impediment.Circ. Res. 70:583–592, 1992.

    PubMed  CAS  Google Scholar 

  20. Rivlin, R. S., and D. W. Saunders. Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber.Philos. Trans. 243:251–288, 1951.

    Article  Google Scholar 

  21. Shroff, S. G., D. R. Saner, and R. Lal. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy.Am. J. Physiol. 269:C286-C292, 1995.

    PubMed  CAS  Google Scholar 

  22. Tao, N. J., S. M. Lindsay, and S. Lees. Measuring the microelastic properties of biological material.Biophys. J. 63: 1165–1169, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Zahalak, G. I., W. B. McConnaughey, and E. L. Elson. Determination of cellular mechanical properties by cell poking, with an application to leukocytes.J. Biomech. Eng. 112: 283–294, 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karduna, A.R., Halperin, H.R. & Yin, F.C.P. Experimental and numerical analyses of indentation in finite-sized isotropic and anisotropic rubber-like materials. Ann Biomed Eng 25, 1009–1016 (1997). https://doi.org/10.1007/BF02684136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684136

Keywords

Navigation