Skip to main content
Log in

Evidence for reductive elimination of H2 in the decomposition of primary arsines

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The decomposition of o-CH3C6H4AsD2 (o-tolyl AsD2) in the gas phase at 900K gives toluene with 0-3 D atoms in the methyl group and/or D on theortho carbon. These experimental data, together with calculations carried out in the PM3 system show that the only low energy pathway for decomposition ofo-tolylAsD2 involves loss of D2 followed by reaction ofo-tolylAs with intacto-tolylAsD2 to giveo-tolylAsD•.o-tolylAsD• can reductively eliminate toluene or can undergo a rearrangement too-HDAsC6H4CH2• for which the calculated free energy of activation at 900K is very similar to that for reductive elimination, hence explaining the multiple deuteriation of the methyl group of toluene. Calculations on the decomposition oftBuAsH2 show that this too decomposes by loss of H2 to givetBuAs with a very low free energy of activation.tBuAs decomposes via β-H abstraction to 2-methylpropene and AsH. There is no unimolecular process with a low free energy of activation that leads to 2-methylpropane, so it is proposed that this product arises mainly from bimolecular H transfer fromtBuAsH2 totBuAs to givetBuAsH• which can lose 2-methylpropene ortBu•.tBu• abstracts H from an AsH species to give 2-methylpropane. A number of experimental results on the decomposition oftBuAsH2 are rationalized in terms of these mechanistic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Foster, C. Glidewell and D.J. Cole-Hamilton,J. Elec-tron. Mater. 23, 69 (1994).

    Article  CAS  Google Scholar 

  2. C.S. Palmer and R. Adams,J. Amer. Chem. Soc. 44, 1356 (1922).

    Article  CAS  Google Scholar 

  3. J.J.P. Stewart,J. Comp. Chem. 10, 209 (1989); b) J.J.P. Stewart,J. Comp. Chem. 10, 221 (1989); c) J.J.P. Stewart,J. Comp. Chem. 12, 320 (1991).

    Article  CAS  Google Scholar 

  4. J.J.P. Stewart,J. Comp. Aided Mol. Des. 4, 1 (1990).

    Article  Google Scholar 

  5. Handbook of Chemistry and Physics, 52nd ed. (Ohio: Chemi-cal Rubber Co., 1971), p. D76.

  6. R.D. Hoare, O.F.Z. Khan, J.O. Williams, D. M. Frigo, A.C. Jones and S. A. Rushworth,Chemtronics 4, 78 (1989).

    CAS  Google Scholar 

  7. M.C. Ball and A.H. Norbury,Physical Data for Inorganic Chemists (London: Longman, 1974).

    Google Scholar 

  8. D.F. Foster, C. Glidewell and D.J. Cole-Hamilton,Appl. Phys. Lett. 63, 57 (1993).

    Article  CAS  Google Scholar 

  9. C.A. Larsen, N.I. Buchan, S.H. Li and G.B. Stringfellow,J. Cryst. Growth 94, 663 (1989).

    Article  CAS  Google Scholar 

  10. P.W. Lee, T.R. Ornstead, D.R. McKenna and K.F. Jensen,J. Cryst. Growth 93, 134 (1988).

    Article  CAS  Google Scholar 

  11. R.H. Marking, W.L. Gladfelter and K.F. Jensen,Chem. Mater. 2, 499 (1990).

    Article  CAS  Google Scholar 

  12. M. Mizuta, S. Korata, T. Iwamoto and H. Kukimoto,Jpn. J. Appl. Phys. 23, L283 (1984).

    Article  Google Scholar 

  13. G.B. Stringfellow,Mechanisms of Reactions of Organometal-lic Compounds with Surfaces, ed. D.J. Cole-Hamilton and J.O. Williams (New York: Plenum, 1989), p. 117.

    Google Scholar 

  14. A.C. Jones,J. Cryst. Growth 129, 728 (1993).

    Article  CAS  Google Scholar 

  15. S.P. Den Baars, B.Y. Maa, P.D. Dapkus, A.D. Danner and H.C. Lee,J. Cryst. Growth 77, 188 (1986).

    Article  Google Scholar 

  16. M.H. Zimmer, R. Hovel, W. Brysch, A. Brauers and P. Balk,J. Cryst. Growth 124, 348 (1992).

    Google Scholar 

  17. G. Haake, S.P. Watkins and H. Burkhard,J. Cryst. Growth 107, 342 (1991).

    Article  Google Scholar 

  18. H.A. Skinner and L. Pilcher,Q. Rev. Chem. Soc. 17, 264 (1963).

    Article  CAS  Google Scholar 

  19. O. Kubaschewski, E.L. Evans and C.B. Alcock,Metallurgical Thermochemistry, Fourth Ed. (Oxford, England: Pergamon, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, D.F., Glidewell, C., Woolley, G.R. et al. Evidence for reductive elimination of H2 in the decomposition of primary arsines. J. Electron. Mater. 24, 1731–1738 (1995). https://doi.org/10.1007/BF02676842

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676842

Key words

Navigation