Skip to main content
Log in

Modeling Al enrichment in galvanized coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum enrichment in galvanized coatings was shown to be due to the formation of an inhibition layer, consisting of Fe2Al5,at the substrate/coating interface. The formation of the inhibition layer is a two-stage process. The first stage, associated with a high rate of Al uptake, is nucleation controlled, and the successive stage is diffusional growth controlled. The critical nucleus size is approximately one molecule of the compound Fe2Al5, and the energy barrier for the heterogeneous nucleation is 0.94 eV. Aluminum uptake increases with increasing strip-entry temperature and thickness, because both work to increase the effective temperature for the nucleation and growth processes. A model was proposed in which Al enrichment was shown as a function of bath Al content, bath temperature, strip-entry temperature, strip thickness, immersion time, and coating weight. The model is in good agreement with experimental results available in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Belisle:Proc. Physical Metallurgy of Zinc Coated Steel, TMS Annual Meeting, San Francisco, CA, A.R. Marder, ed., TMS, Warrendale, PA, 1994, pp. 65–77.

    Google Scholar 

  2. M. Isobe:J. Iron Steel Inst. Jpn., 1992, vol. 5(5), pp. 1629–32.

    Google Scholar 

  3. J. Faderl, M. Pimminger, and L. Schonberger:Proc. 2nd Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech ’92), Amsterdam, Verlag Stahleisen mbH, Duseldorf, 1992, pp. 194–98.

  4. N.-Y. Tang and G.R. Adams:Proceedings, The Physical Metallurgy of Zinc Coated Steel, TMS Annual Meeting, San Francisco, CA, A.R. Marder, ed., TMS, Warrendale, PA, 1994, pp. 41–54.

    Google Scholar 

  5. N.-Y. Tang:J. Phase Equil., 1994, vol. 15, pp. 237–38.

    Article  CAS  Google Scholar 

  6. M.A. Haughton:Proc. 2nd Int. Conf. on Hot Dip Galvanizng, 1952, pp. 59–89.

  7. A.R.P. Ghuman and J.I. Goldstein:Metall. Trans., 1971, vol. 2, pp. 2903–14.

    CAS  Google Scholar 

  8. M. Urednicek and J.S. Kirkaldy:Z. Metallkd., 1973, vol. 64, p. 899.

    CAS  Google Scholar 

  9. D. Horstman:Proc. 7th Int. Conf. on Hot Dip Galvanizing, 1964, p. 164.

  10. N.-Y. Tang:Mater. Sci. Technol., 1995, in press.

  11. U.M. Urednicek and J.S. Kirkaldy: Z.Metallkd., 1973, vol. 64, pp. 419–27.

    CAS  Google Scholar 

  12. N.-Y. Tang and G.N. Anderson:Proc. Galvanizer Association Meeting, Baltimore, MD, Oct. 1993, vol. 85, pp. 78–98.

  13. A.R. Borzillo and W.C. Hahn Jr:ASM Trans., 1969, vol. 62(3), pp. 729–39.

    CAS  Google Scholar 

  14. H. Yamaguchi and Y. Hisamatsu:Trans. Iron Steel Inst. Jpn., 1979, vol. 19, pp. 649–58.

    Google Scholar 

  15. N.-Y. Tang: Project 641-020, Report No. 2, Cominco Ltd., Product Technology Centre, Mississauga, ON, Canada, 1993.

  16. N.-Y. Tang and M.J. Plamondon: Project 641-020, Report No. 3, Cominco Ltd., Product Technology Centre, Mississauga, ON, Canada, 1993.

  17. S. Belisle, V. Lezon, and M. Gagne:J. Phase Equilibria, 1991, vol. 12(3), pp. 259–65.

    Article  CAS  Google Scholar 

  18. Z.W. Chen, R.M. Sharp, and J.T. Gregory:Mater. Forum, 1990, vol. 14, pp. 130–36.

    CAS  Google Scholar 

  19. Z.W. Chen, J.T. Gregory, and R.M. Sharp:Metall. Trans. A. 1992, vol. 23A, pp. 2393–2400.

    CAS  Google Scholar 

  20. D.A. Porter and K.E. Easterling:Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992, pp. 122, 168–171, and 191.

    Google Scholar 

  21. W.A. Miller and G.A. Chadwick: ActaMetall., 1967, vol. 15, p. 607.

    Article  CAS  Google Scholar 

  22. N.H. Nachtrieb, E. Fraga, and C. Wahl:J. Phys. Chem., 1963, vol. 67, p. 2353.

    Article  CAS  Google Scholar 

  23. E.M. Sparrow and J.L. Gregg:J. Aero. Sci., 1957, vol. 244, p. 852.

    Google Scholar 

  24. J.C. Ion, K.E. Eastering, and M.F. Ashby: ActaMetall., 1984, vol. 32, pp. 1949–62.

    Article  CAS  Google Scholar 

  25. H.R. Shercliff and M.F. Ashby:Mater. Sci. Technol., 1991, vol. 7, pp. 85–88.

    CAS  Google Scholar 

  26. H.R. Shercliff and M.F. Ashby:Acta Metall. Mater., 1990, vol. 38, pp. 1789–1812.

    Article  CAS  Google Scholar 

  27. C. Zener:J. Appl. Phys., 1949, vol. 20, p.950.

    Article  CAS  Google Scholar 

  28. H. Yamaguchi and Y. Hisamatsu:Tetsu-to-Hagane, 1973, vol. 59(11), Lectures 277 and 278, pp. S553 and S554 (in Japanese).

    Google Scholar 

  29. L.A. Giannuzzi, P.R. Howell, H.W. Pickering, and W.R. Bitler:Proc. 2nd Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (Galvaltech ’92), Amsterdam, Verlag Stahleisen mbH, Dusseldorf, 1992, pp. 461–67.

  30. P. Perrot, J.-C. Tissier, and J.-Y. Dauphin: Z.Metallkd., 1992, vol. 83 (11), pp. 786–90.

    CAS  Google Scholar 

  31. M. Dubois:Proc. Physical Metallurgy of Zinc Coated Steel, TMS Annual Meeting, San Francisco, CA, A.R. Marder, ed., TMS, Warrendale, 1994, pp. 55–64.

  32. C.E. Jordan and A.R. Marder:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 937–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, NY. Modeling Al enrichment in galvanized coatings. Metall Mater Trans A 26, 1699–1704 (1995). https://doi.org/10.1007/BF02670756

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670756

Keywords

Navigation