Skip to main content
Log in

Mobility of martensitic interfaces

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Using a dislocation model of interfacial structure, kinetic theories of dislocation motion are adapted to predict the mobility of martensitic interfaces. Defining generalized driving forces and activation parameters, analytical models are developed which describe the kinetics of motion controlled by various types of obstacle interactions. The behaviors of martensitic interfaces and slip dislocations in identical microstructures are compared. For a lattice-invariant shear by slip, the martensitic interface behaves similarly to a collection of glide dislocations. The interface/obstacle interaction is much weaker if the martensite is internally twinned, giving a higher relative mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Bunshah and R. F. Mehl:Trans. AIME, 1953, vol. 197, p. 1251.

    Google Scholar 

  2. R. H. Goodenow, S.J. Matas, and R. F. Heheman:Trans. AIME, 1963, vol. 227, p. 651.

    CAS  Google Scholar 

  3. G. B. Olson and M. Cohen:Metall. Trans. A, 1976, vol. 7A, p. 1915.

    CAS  Google Scholar 

  4. G. B. Olson and M. Cohen:Proc. Intl. Conf. Solid-State Phase Transf., Carnegie-Mellon Univ., AIME, 1982, p. 1145.

  5. F. C. Frank:Acta Metall., 1953, vol. 1, p. 15.

    Article  CAS  Google Scholar 

  6. R. Bullough and B. A. Bilby:Proc. Phys. Soc., 1956, vol. 69, p. 1276.

    Article  Google Scholar 

  7. W. S. Owen, F. J. Schoen, and G. R. Srinivasan:Phase Transformations, ASM, Metals Park, OH, 1970, p. 157.

    Google Scholar 

  8. F. J. Schoen and W. S. Owen:Metall. Trans., 1971, vol. 2, p. 2431.

    CAS  Google Scholar 

  9. G. B. Olson and M. Cohen:Acta Metall., 1979, vol. 27, p. 1907.

    Article  Google Scholar 

  10. G. B. Olson:Acta Metall., 1981, vol. 29, p. 1475.

    Article  CAS  Google Scholar 

  11. G. B. Olson and M. Cohen:Proc. Intl. Conf. Solid-State Phase Transf., Carnegie-Mellon Univ., AIME, 1982, p. 1209.

  12. M. Grujicic, G. B. Olson, and W. S. Owen:J. de Physique, 1982, vol. 43, suppl. no. 12, p. 173.

    Google Scholar 

  13. U.F. Kocks, A.S. Argon, and M. F. Ashby:Progress Mat. Sci., 1975, vol. 19, p. 1.

    Article  Google Scholar 

  14. J. D. Eshelby:Proc. Phys. Soc., 1956, vol. B69, p. 1013.

    Google Scholar 

  15. J. Weertman:J. Mech. Phys. Solids, 1963, vol. 11, p. 197.

    Article  Google Scholar 

  16. K. M. Knowles:Proc. R. Soc. London, 1982, vol. A380, p. 187.

    Google Scholar 

  17. J. D. Eshelby:Prog. Solid Mechanics, 1961, vol. 2, p. 89.

    Google Scholar 

  18. M. F. Ashby:Phil. Mag., 1966, vol. 14, p. 1157.

    Article  CAS  Google Scholar 

  19. M. Grujicic: Ph.D. Thesis, MIT, Cambridge, MA, 1983.

    Google Scholar 

  20. C. S. Smith:Trans. AIME, 1948, vol. 175, p. 47.

    Google Scholar 

  21. D. M. Haezebrouck: MIT, Cambridge, MA, doctoral research in progress, 1985.

  22. R. H. Richman and G. F. Boiling:Metall. Trans., 1971, vol. 2, p. 2451.

    Article  CAS  Google Scholar 

  23. C. L. Magee:Phase Transformation, ASM, Metals Park, OH, 1970, p. 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Olson, G.B. & Owen, W.S. Mobility of martensitic interfaces. Metall Trans A 16, 1713–1722 (1985). https://doi.org/10.1007/BF02670359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670359

Keywords

Navigation