Skip to main content
Log in

Spinodal decomposition during aging of Fe-Ni-C martensites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A collaborative study of the aging of virgin Fe-Ni-C martensites has combined the techniques of transmission electron microscopy (TEM), atom-probe field-ion microscopy (APFIM), and electrical resistometry. Aging at room temperature leads to the rapid development of a finescale structural modulation along 〈203 〉 lattice directions. Atom-probe analysis of Fe-15Ni-lC martensite reveals the formation of carbon-rich regions whose carbon concentration increases with time and approaches 11 at. pct C on prolonged aging. The early stage kinetics of this process are composition-dependent and are consistent with carbon-diffusion control. The morphological features of the aging reaction are explained by elastic strain-energy considerations. In accordance with previous thermodynamic models, it is concluded that virgin Fe-C martensites are unstable and that phase separation occurs by a spinodal mechanism. The martensitic substructure does not appear to exert any substantial influence on this decomposition behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Taylor, G.B. Olson, M. Cohen, and J.B. Vander Sande:Metall. Trans. A, 1989, vol. 20A, pp. 2749–65.

    CAS  Google Scholar 

  2. G.B. Olson and M. Cohen:Metall. Trans. A, 1983, vol. 14A, pp. 1057–65.

    Google Scholar 

  3. G. Krauss:Proc. Int. Conf. on Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 101–23.

    Google Scholar 

  4. P.G. Winchell and M. Cohen:Trans. ASM, 1962, vol. 55, pp. 347–61.

    CAS  Google Scholar 

  5. G.T. Eldis and M. Cohen:Metall. Trans. A, 1983, vol. 14A, pp. 1007–12.

    Google Scholar 

  6. V.I. Izotov and L.M. Utevskiy:Phys. Met. Metallogr., 1968, vol. 25 (1), pp. 86–96.

    Google Scholar 

  7. M. Kusunoki and S. Nagakura:J. Appl. Crystallogr., 1981, vol. 14, pp. 329–36.

    Article  CAS  Google Scholar 

  8. P.C. Chen and P.G. Winchell:Metall. Trans. A, 1980, vol. 11 A, pp. 1333–39.

    Google Scholar 

  9. W.K. Choo and Roy Kaplow:Acta Metall., 1973, vol. 21, pp. 725–32.

    Article  CAS  Google Scholar 

  10. A.M. Sherman, G.T. Eldis, and M. Cohen:Metall. Trans. A, 1983, vol. 14A, pp. 995–1005.

    Google Scholar 

  11. M.K. Miller, P.A. Beaven, and G.D.W. Smith:Metall. Trans. A, 1981, vol. 12A, pp. 1197–1204.

    Google Scholar 

  12. M.K. Miller, P.A. Beaven, S.S. Brenner, and G.D.W. Smith:Metall. Trans. A, 1983, vol. 14A, pp. 1021–24.

    Google Scholar 

  13. L. Chang, A. Cerezo, G.D.W. Smith, M.K. Miller, M.G. Burke, S.S. Brenner, K.A. Taylor, T. Abe, and G.B. Olson:J. Phys., 1984, vol. 45, pp. C9409-C9416.

    Google Scholar 

  14. L. Chang, G.D.W. Smith, and G.B. Olson:J. Phys., 1986, vol. 47, pp. C2265-C2275.

    Google Scholar 

  15. S. Best: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1985.

  16. A.M. Sherman: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1972.

  17. A.K. Sachdev: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1977.

  18. B.P.J. Sandvik and CM. Wayman:Metallography, 1983, vol. 16, pp. 429–47.

    Article  CAS  Google Scholar 

  19. P. Haasen:Metall. Trans. A, 1985, vol. 16A, pp. 1173–84.

    CAS  Google Scholar 

  20. J. Piller and H. Wendt:Proc. 20th Field Emission Symposium, 1982, H.O. Andren and H. Norden, eds., Almqvist and Wiksell, Stockholm, 1983, pp. 265–74.

    Google Scholar 

  21. H.W. King and S.G. Glover:JISI, 1959, vol. 193, pp. 123–32.

    CAS  Google Scholar 

  22. V. Kerlins and C. Altstetter:Trans. AIME, 1963, vol. 227, pp. 94–98.

    CAS  Google Scholar 

  23. G.V. Kurdjumov and A.G. Khachaturyan:Acta Metall., 1975, vol. 23, pp. 1077–88.

    Article  Google Scholar 

  24. I.R. Entin, V.A. Somenkov, and S.Sh. Shil’shtein:Sov. Phys. Dokl., 1973, vol. 17, pp. 1021–23.

    Google Scholar 

  25. R. Kaplow, M. Ron, and N. DeCristofaro:Metall. Trans. A, 1983, vol. 14A, pp. 1135–45.

    CAS  Google Scholar 

  26. C. Zener:Trans. AIME, 1946, vol. 167, pp. 550–83.

    Google Scholar 

  27. K.A. Taylor, G.B. Olson, M. Cohen, and J.B. Vander Sande:Metall. Trans. A, 1989, vol. 20A, pp. 2739–47.

    CAS  Google Scholar 

  28. A.G. Khachaturyan:Theory of Strudural Transformations in Solids, John Wiley & Sons, Inc., New York, NY, 1983, pp. 244–49.

    Google Scholar 

  29. A.G. Khachaturyan:Theory of Strudural Transformations in Solids, John Wiley & Sons, Inc., New York, NY, 1983, p. 191.

    Google Scholar 

  30. M. Hayakawa, M. Tanigami, and M. Oka:Metall. Trans. A, 1985, vol. 16A, pp. 1745–50.

    CAS  Google Scholar 

  31. H. Ino, T. Ito, S. Nasu, and U. Gonser:Acta Metall., 1982, vol. 30, pp. 9–20.

    Article  CAS  Google Scholar 

  32. S. Nagakura and M. Toyoshima:Trans. JIM, 1979, vol. 20, pp. 100–10.

    CAS  Google Scholar 

  33. P. Ferguson and K.H. Jack:Tempering ’81, Metals Society, London, 1983, pp. 158–63.

    Google Scholar 

  34. Nicholas DeCristofaro and Roy Kaplow:Metall. Trans. A, 1977, vol. 8A, pp. 35–44.

    CAS  Google Scholar 

  35. J.-M.R. Génin:Metall. Trans. A, 1987, vol. 18A, pp. 1371–88.

    Google Scholar 

  36. P. Rochegude and J. Foct:Phys. Status Solidi A, 1986, vol. 98, pp. 51–62.

    Article  CAS  Google Scholar 

  37. A. Sato, Y. Watanabe, and T. Mura:J. Phys. Chem. Solids, 1988, vol. 49, pp. 529–40.

    Article  Google Scholar 

  38. J.-M.R. Génin:Metall. Trans. A, 1988, vol. 19A, pp. 2901–09.

    Google Scholar 

  39. S.B. Ren and S.T. Wang:Metall. Trans. A, 1988, vol. 19A, pp. 2427–32.

    CAS  Google Scholar 

  40. A.G. Khachaturyan:Theory of Strudural Transformations in Solids, John Wiley & Sons, Inc., New York, NY, 1983, pp. 530–41.

    Google Scholar 

  41. J.W. Cahn:Trans. AIME, 1968, vol. 242, pp. 166–80.

    CAS  Google Scholar 

  42. S.M. Allen and J.W. Cahn:Acta Metall., 1976, vol. 24, pp. 425–37.

    Article  CAS  Google Scholar 

  43. J.W. Cahn and F. Larché:Acta Metall., 1984, vol. 32, pp. 1915–23.

    Article  CAS  Google Scholar 

  44. R.P. Smith:Trans. AIME, 1962, vol. 224, pp. 105–11.

    CAS  Google Scholar 

  45. M. Hillert:Acta Metall., 1959, vol. 7, pp. 653–58.

    Article  CAS  Google Scholar 

  46. I. Lifshitz and V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  47. C. Wagner:Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  48. J.S. Langer, M. Bar-on, and H.D. Miller:Phys. Rev. A, 1975, vol. 11, pp. 1417–29.

    Article  Google Scholar 

  49. J.S. Langer and A.J. Schwartz:Phys. Rev. A, 1980, vol. 21, pp. 948–58.

    Article  CAS  Google Scholar 

  50. G.R. Speich:Trans. AIME, 1969, vol. 245, pp. 2553–64.

    CAS  Google Scholar 

  51. D. Kalish and M. Cohen:Mater. Sci. Eng., 1970, vol. 6, pp. 156–66.

    Article  CAS  Google Scholar 

  52. J.M. Pelletier, G. Vigier, C. Mai, and R. Borrelly:Acta Metall., 1983, vol. 31, pp. 1491–96.

    Article  CAS  Google Scholar 

  53. D. Turnbull, H.S. Rosenbaum, and H.N. Treaftis:Acta Metall., 1960, vol. 8, pp. 277–95.

    Article  CAS  Google Scholar 

  54. D.W. Hoffman and M. Cohen:Acta Metall., 1973, vol. 21, pp. 1215–23.

    Article  CAS  Google Scholar 

  55. S.E. Hartfield: S.M. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1988.

  56. Y. Tanaka and K. Shimizu:Trans. JIM, 1981, vol. 22, pp. 779–88.

    CAS  Google Scholar 

  57. M. Gore: Ph.D. Thesis Research, Massachusetts Institute of Technology, Cambridge, MA, 1985.

  58. T. Vilo and J. Pietikäinen:Proc. Int. Conf. on Martensitic Transformations, Cambridge, MA, 1979, pp. 721-26.

  59. J. Pietikäinen:Trans. ISIJ, 1985, vol. 25, pp. 340–44.

    Google Scholar 

  60. F.E. Fujita, C. Shiga, T. Moriya, and H. Ino:J. Jpn. Inst. Met., 1974, vol. 38, pp. 1030–37.

    CAS  Google Scholar 

  61. F.E. Fujita:Metall. Trans. A, 1977, vol. 8A, pp. 1727–36.

    CAS  Google Scholar 

  62. G. Krasko: Massachusetts Institute of Technology, Cambridge, MA, unpublished research, 1986.

  63. S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura:Metall. Trans. A, 1983, vol. 14A, pp. 1025–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Due to tetragonality of the martensites in this paper, it should be noted that the third Miller index (representing the c-axis) is not interchangeable with the other two indices when obtaining equivalent variants.

K.A. Taylor, formerly with the Massachusetts Institute of Technology

L. Chang, formerly with the University of Oxford

G.B. Olson, formerly with the Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, K.A., Chang, L., Olson, G.B. et al. Spinodal decomposition during aging of Fe-Ni-C martensites. Metall Trans A 20, 2717–2737 (1989). https://doi.org/10.1007/BF02670166

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670166

Keywords

Navigation