Skip to main content
Log in

Modulated martensite formation behavior in Fe–Ni-based alloys; athermal and thermally activated mechanisms

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The martensitic transformation of Fe–22 wt% Ni austenite was investigated by high-resolution dilatometry as well as differential thermal analysis. Macroscopically discontinuous formation of lath martensite was observed, manifested in a train of transformation-rate maxima. It is proposed that the modulation of the transformation rate is caused by simultaneous formation of blocks in different martensite packages. The origin of simultaneity is ascribed to the interplay of chemical driving force, developing strain energy, and its relaxation upon sufficiently slow cooling. The transformation-rate maxima become more distinct with decreasing cooling rate (CR), clearly indicating the involvement of a thermally activated process in martensite formation. Quantitative analysis of the microstructure of differently cooled specimens revealed smaller martensite block sizes for higher CRs. All observations are compatible with athermal nucleation and thermally activated growth. (Local) strain relaxation in the austenite was identified as the involved thermally activated mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Z. Nishiyama: Martensitic Transformation, M.E. Fine, M. Meshii, and C.M. Wayman eds.; Academic Press: New York, 1978.

  2. E.S. Machlin and M. Cohen: Burst phenomenon in martensitic transformation. Trans AIME 191, 746 (1951).

    Google Scholar 

  3. R. Brook and A. Entwisle: Kinetics of burst transformation to martensite. J. Iron Steel Inst. 203, 905 (1965).

    CAS  Google Scholar 

  4. A. Amengual, L. Manosa, F. Marco, C. Picornell, C. Segui, and V. Torra: Systematic study of the martensitic transformation in a Cu-Zn-Al alloy. Reversibility versus irreversibility via acoustic emission. Thermochim. Acta 116, 195 (1987).

    Article  CAS  Google Scholar 

  5. E.K.H. Salje, J. Koppensteiner, M. Reinecker, W. Schranz, and A. Planes: Jerky elasticity: Avalanches and the martensitic transition in Cu74.08Al23.13Be2.79 shape-memory alloy. Appl. Phys. Lett. 95, 231908 (2009).

    Article  Google Scholar 

  6. M.C. Gallardo, J. Manchado, F.J. Romero, J. del Cerro, E.K.H. Salje, A. Planes, E. Vives, R. Romero, and M. Stipcich: Avalanche criticality in the martensitic transition of Cu67.64Zn16.71Al15.65 shape-memory alloy: A calorimetric and acoustic emission study. Phys. Rev. B 81, 174102 (2010).

    Article  Google Scholar 

  7. R. Niemann, J. Kopeček, O. Heczko, J. Romberg, L. Schultz, S. Fähler, E. Vives, L. Mañosa, and A. Planes: Localizing sources of acoustic emission during the martensitic transformation. Phys. Rev. B 89, 214118 (2014).

    Article  Google Scholar 

  8. E.J. Mittemeijer: Fundamentals of Materials Science (Springer, Berlin-Heidelberg, 2011).

    Book  Google Scholar 

  9. S. Loewy, B. Rheingans, S.R. Meka, and E.J. Mittemeijer: Unusual martensite-formation kinetics in steels: Observation of discontinuous transformation rates. Acta Mater. 64, 93 (2014).

    Article  CAS  Google Scholar 

  10. M. Villa, K. Pantleon, M. Reich, O. Kessler, and M.A.J. Somers: Kinetics of anomalous multi-step formation of lath martensite in steel. Acta Mater. 80, 468 (2014).

    Article  CAS  Google Scholar 

  11. M. Villa, M.F. Hansen, K. Pantleon, and M.A.J. Somers: Anomalous kinetics of lath martensite formation in stainless steel. Mater. Sci. Technol. (2014). DOI: 10.1179/1743284714Y.0000000709.

  12. L. Kaufman and M. Cohen: The martensitic transformation in the iron-nickel system. Trans AIME 206, 1393 (1956).

    Google Scholar 

  13. J.A. Klostermann and W.G. Burgers: Surface martensite in iron-nickel. Acta Metall. 12, 355 (1964).

    Article  CAS  Google Scholar 

  14. J. Marder and A. Marder: The morphology of iron-nickel massive martensite. Trans. ASM 62, 1 (1969).

    CAS  Google Scholar 

  15. S. Floreen: The physical metallurgy of maraging steels. Int. Mater. Rev. 13, 115 (1968).

    Article  CAS  Google Scholar 

  16. K. Tsuzaki, T. Maki, and I. Tamura: Isothermal character and cooling rate dependence of lath martensitic transformation in Fe-15% Ni alloy. Scr. Metall. 21, 1693 (1987).

    Article  CAS  Google Scholar 

  17. K. Tsuzaki, T. Fukiage, T. Maki, and I. Tamura: The effect of Ni content on the isothermal character of lath martensitic transformation in Fe-Ni alloys. Mater. Sci. Forum 56–58, 229 (1990).

    Google Scholar 

  18. E.A. Wilson, S. Allen, and J. Butler: γ→α-transformation on Fe-15Ni. Met. Sci. 16, 539 (1982).

    Article  CAS  Google Scholar 

  19. E.A. Wilson, D.V. Shtansky, and Y. Ohmori: A kinetic and electronmicroscopic study of transformations in continuously cooled Fe-15% Ni alloys. ISIJ Int. 41, 866 (2001).

    Article  CAS  Google Scholar 

  20. Y. Liu, L. Zhang, F. Sommer, and E.J. Mittemeijer: Kinetics of martensite formation in substitutional Fe-Al alloys; dilatometric analysis. Metall. Mater. Trans. A 44, 1430 (2013).

    Article  CAS  Google Scholar 

  21. Y.C. Liu, F. Sommer, and E.J. Mittemeijer: Calibration of the differential dilatometric measurement signal upon heating and cooling; thermal expansion of pure iron. Thermochim. Acta 413, 215 (2004).

    Article  CAS  Google Scholar 

  22. W. Baumann, A. Leineweber, and E.J. Mittemeijer: Calibration and desmearing of a differential thermal analysis measurement signal — Upon heating and cooling — In the high-temperature region. Thermochim. Acta 472, 50 (2008).

    Article  CAS  Google Scholar 

  23. A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: Calibration and desmearing of a differential thermal analysis measurement signal upon heating and cooling. Thermochim. Acta 383, 21 (2002).

    Article  CAS  Google Scholar 

  24. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 54, 1279 (2006).

    Article  CAS  Google Scholar 

  25. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323 (2006).

    Article  CAS  Google Scholar 

  26. N. Thadhani and A. Meyers: Kinetics of isothermal martensitic transformation. Prog. Mater. Sci. 30, 1 (1986).

    Article  CAS  Google Scholar 

  27. S. Morito, R. Igarashi, K. Kamiya, T. Ohba, and T. Maki: Effect of cooling rate on morphology and crystallography of lath martensite in Fe-Ni alloys. Mater. Sci. Forum 638–642, 1459 (2010).

    Article  Google Scholar 

  28. K. Tsuzaki and T. Maki: The effect of cooling rate on the morphology of lath martensite in Fe-Ni alloys. J. Japan Inst. Met. 45, 126 (1981).

    Article  CAS  Google Scholar 

  29. R.E. Cech and D. Turnbull: Heterogeneous nucleation of martensite transformation. Trans AIME 206, 124 (1956).

    Google Scholar 

  30. J. Fisher: Application of nucleation theory to isothermal martensite. Acta Metall. 1, 1 (1953).

    Article  Google Scholar 

  31. S.R. Pati and M. Cohen: Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy. Acta Metall. 19, 1327 (1971).

    Article  CAS  Google Scholar 

  32. V. Raghavan and M. Cohen: Measurement and interpretation of isothermal martensitic kinetics. Metall. Mater. Trans. B 2, 2409 (1971).

    Article  CAS  Google Scholar 

  33. G. Ghosh and G.B. Olson: Kinetics of fcc→bcc heterogeneous martensitic nucleation-II. Thermal activation. Acta Metall. Mater. 42 (10), 3371 (1994).

    Article  CAS  Google Scholar 

  34. D. Kim, S-J. Lee, and B.C. de Cooman: Microstructure of low C steel isothermally transformed in the Ms to Mf temperature range. Metall. Mater. Trans. A 43, 4967 (2012).

    Article  CAS  Google Scholar 

  35. M. Villa, M.F. Hansen, K. Pantleon, and M.A.J. Somers: Thermally activated growth of lath martensite in Fe–Cr–Ni–Al precipitation hardenable stainless steel. Mater. Sci. Technol. 31, 115 (2015).

    Article  CAS  Google Scholar 

  36. Y.C. Liu, F. Sommer, and E.J. Mittemeijer: Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater. 51, 507 (2003).

    Article  CAS  Google Scholar 

  37. Y.C. Liu, F. Sommer, and E.J. Mittemeijer: Abnormal austenite–ferrite transformation behaviour of pure iron. Philos. Mag. 84, 1853 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. M. Villa (Technical University of Denmark) for critical reading of the manuscript and helpful discussions and Dr. E. Bischoff (Max Planck Institute for Intelligent Systems) for performing the EBSD (electron backscatter diffraction) measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Loewy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loewy, S., Rheingans, B., Meka, S.R. et al. Modulated martensite formation behavior in Fe–Ni-based alloys; athermal and thermally activated mechanisms. Journal of Materials Research 30, 2101–2107 (2015). https://doi.org/10.1557/jmr.2015.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.175

Navigation