Skip to main content
Log in

Simulation of curvature-driven grain growth by using a modified monte carlo algorithm

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Monte Carlo (MC) algorithm that currently exists in the literature for simulating curvature-driven grain growth has been modified. The modified algorithm results in an acceleration of the simulated grain growth and an early estimate of the grain growth exponent that is close to the theoretical value of 0.5. The upper limit of grain size distributions obtained with the new algorithm is significantly lower than that obtained with the old, because the new algorithm eliminates grain coalescence during grain growth. The log-normal function provides an excellent fit to the grain size distribution data obtained with the new algorithm, after taking into account the anisotropy in grain boundary energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Fosdick:Methods in Computational Physics, Academic Press, New York, NY, 1963, vol. 1.

    Google Scholar 

  2. A.B. Bortz, M.H. Calos, and J.L. Lebowitz:J. Comput. Phys., 1975, vol. 17, pp. 10–18.

    Article  Google Scholar 

  3. D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni:Scripta Metall., 1983, vol. 17, pp. 241–46.

    Article  CAS  Google Scholar 

  4. P.S. Sahni, D.J. Srolovitz, G.S. Grest, M.P. Anderson, and S.A. Safran:Phys. Rev. B, 1983, vol. 28, pp. 2705–16.

    Article  CAS  Google Scholar 

  5. M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni:Acta Metall., 1984, vol. 32, pp. 783–91.

    Article  CAS  Google Scholar 

  6. D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest:Acta Metall., 1984, vol. 32, pp. 793–802.

    Article  CAS  Google Scholar 

  7. D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni:Acta Metall., 1984, vol. 32, pp. 1429–38.

    Article  CAS  Google Scholar 

  8. G.S. Grest, D.J. Srolovitz, and M.P. Anderson:Acta Metall., 1985, vol. 33, pp. 509–20.

    Article  CAS  Google Scholar 

  9. D.J. Srolovitz, G.S. Grest, and M.P. Anderson:Acta Metall., 1985, vol. 33, pp. 2233–47.

    Article  CAS  Google Scholar 

  10. M.P. Anderson, G.S. Grest, and D.J. Srolovitz: inComputer Simulation of Microstructural Evolution, D.J. Srolovitz, ed., TMS, Warrendale, PA, 1986, pp. 77-93.

    Google Scholar 

  11. M.P. Anderson, G.S. Grest, and D.J. Srolovitz:Scripta Metall., 1985, vol. 19, pp. 225–30.

    Article  CAS  Google Scholar 

  12. F. Righetti, T.M. Liebling, and A. Mocellin:Acta Stereol, 1989, vol. 8, pp.459–644.

    Google Scholar 

  13. M.P. Anderson, G.S. Grest, R.D. Doherty, K. Li, and D.J. Srolovitz:Scripta Metall., 1989, vol. 23, 753–58.

    Article  CAS  Google Scholar 

  14. G.S. Grest, M.P. Anderson, and D.J. Srolovitz:Phys. Rev. B, 1988, vol. 38, pp. 4752–60.

    Article  Google Scholar 

  15. M.P. Anderson, G.S. Grest, and D.J. Srolovitz:Phil. Mag. B, 1989, vol. 59, pp. 293–329.

    Article  Google Scholar 

  16. E.A. Holm, D.J. Srolovitz, and J.W. Cahn:Acta Metall., 1993, vol. 41, pp. 1119–36.

    Article  CAS  Google Scholar 

  17. Y. Shen, B. Radhakrishnan, and R.G. Thompson:3rd Int. Conf. on Trends in Welding Research, Gatlinburgh, TN, ASM, Materials Park, OH, 1992, pp. 259-63.

    Google Scholar 

  18. N.P. Louat:Acta Metall., 1974, vol. 22, pp. 721–24.

    Article  CAS  Google Scholar 

  19. M. Hillert:Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  20. B. Radhakrishnan and T. Zacharia:Int. Conf. on Modeling and Control of Joining Processes, Orlando, FL, Dec. 8–10, 1993.

  21. J. von Neumann:Metal Interfaces, ASM cleveland,OH1952 p. 108.

    Google Scholar 

  22. W.W. Mullins:J. Appl. Phys., 1956, vol. 27 pp. 900–04.

    Article  Google Scholar 

  23. W.W. Mullins and J. Vinals:Acta Metall. Mater., 1993, vol. 41, pp. 1359–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radhakrishnan, B., Zacharia, T. Simulation of curvature-driven grain growth by using a modified monte carlo algorithm. Metall Mater Trans A 26, 167–180 (1995). https://doi.org/10.1007/BF02669802

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669802

Keywords

Navigation