Skip to main content
Log in

Environmental interactions in high-temperature fatigue crack growth of Ti-1100

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The crack growth behavior of Ti-1100 is investigated for loading frequencies ranging from 30 to 0.0031 Hz at temperature levels extending from 23 °C to 650 °C in both air and vacuum environments. Two types of time-dependent damage mechanisms have been identified: oxidation and creep effects. It is concluded that the effect of oxidation on the crack growth acceleration is rapidly developed and only weakly dependent on total cycle time. Creep effects, on the other hand, are dominant at low frequencies in both air and vacuum and are loading rate dependent. The degree of contribution of each of these two damage modes during the steady state growth region has been phenomenologically determined by examining the frequency dependence on the exponent and coefficient parameters of the Paris-type crack growth equation. It is found that these parameters are largely determined by the extent of the viscoplastic response of the crack tip region below a specific, environment-sensitive transition loading frequency. Furthermore, the physical mechanisms involved in the environment-affected damage are identified with the nature of crack tip plastic work input as a function of loading frequency. The influence of frequency and environment on the anomalous appearance of pronounced stage I/stage II knee regions is also discussed with respect to closure levels and creep transient response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.I. Verkin and N.M. Grinberg:Mater. Sci. Eng., 1979, vol. 41, pp. 149–81.

    Article  CAS  Google Scholar 

  2. J.E. King and P.J. Cotterill:Mater. Sci. Technol., 1990, vol. 6, pp. 19–31.

    Article  CAS  Google Scholar 

  3. L.F. Coffin: inFatigue, Environment and Temperature Effects, 27th Sagamore Army Materials Research Conf., Bolton Landing, NY, J.J. Burke and V. Weiss, eds., Plenum Press, New York, NY, 1983, pp. 1–40.

    Google Scholar 

  4. M.A. Däubler, H. Grey, L. Wagner, and G. Lütjering:Z. Metallkd., 1987, vol. 78, pp. 406–11.

    Google Scholar 

  5. H. Ghonem and D. Zheng:Mater. Sci. Eng., 1992, vol. 150a, pp. 151–60.

    Article  Google Scholar 

  6. P. Marshall:Fatigue at High Temperature, International Spring Meeting, Societé Francaise de Metallurgie, Paris, 1986, pp. 109–45.

    Google Scholar 

  7. R.A. Ruppen, C.L. Hoffman, V.M. Radhakrishnan, and A.J. McEvily:Fatigue, Environment and Temperature Effects, 27th Sagamore Army Materials Research Conf., Bolton Landing, NY, J.J. Burke and V. Weiss, eds., Plenum Press, New York, NY, 1983, pp. 265–300.

    Chapter  Google Scholar 

  8. P.J. Bania:J. Met., 1988, vol. 40 (3), pp. 20–22.

    Google Scholar 

  9. P.J. Bania: in6th World Conf. on Titanium, Part II, Cannes, France, June 6-9, 1988, P. Lacombe, R. Tricot, and G. B’eranger, eds., Les Editions de Physique, Les Ulis Cedex, France, 1988, pp. 825–30.

    Google Scholar 

  10. H. Ghonem and R. Foerch:Mater. Sci. Eng., 1991, vol. A138, pp. 69–81.

    Article  CAS  Google Scholar 

  11. A. Madsen: M.S. Thesis, University of Rhode Island, Kingston, RI, 1993.

    Google Scholar 

  12. H.J. Rack:Scripta Metall, 1975, vol. 9, pp. 829–31.

    Article  CAS  Google Scholar 

  13. M.R. Winstone, R.D. Rawlings, and D.R.F. West:J. Less- Common Met., (1973), vol. 31, pp. 143–50.

    Article  CAS  Google Scholar 

  14. H.W. Liu and J.J. McGowan: “A Kinetic Analysis of High Temperature Fatigue Crack Growth,” AFWAL-TR-81-4036, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, 1981.

    Book  Google Scholar 

  15. A.S. Krausz and K. Krausz:Fracture Kinetics of Crack Growth, Mechanical Behavior of Materials, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988, vol. 1.

    Book  Google Scholar 

  16. Z. Song and D.W. Hoeppner:Int. J. Fatigue, 1988, vol. 10, pp. 211–18.

    Article  CAS  Google Scholar 

  17. N. Walker and C.J. Beevers:Fatigue Fract. Eng. Mater. Struct., 1979, vol. 1, pp. 135–148.

    Article  CAS  Google Scholar 

  18. C.J. Beevers and CM. Ward-Close:Fatigue, Environment and Temperature Effects, 27th Sagamore Army Materials Research Conf., Bolton Landing, NY, J.J. Burke and V. Weiss, eds., Plenum Press, New York, NY, 1983, pp. 83–102.

    Chapter  Google Scholar 

  19. J.A. Ruppen and A.J. McEvily:Fractography and Materials Science, ASTM STP 733, Gilbertson and Zipp, eds., ASTM, Philadelphia, PA, 1981, pp. 32–50.

    Chapter  Google Scholar 

  20. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Metall. Trans., 1977, vol. 8A, pp. 1737–43.

    Article  CAS  Google Scholar 

  21. C.J. Beevers and C.M. Ward-Close:Fatigue, Environment and Temperature Effects, 27th Sagamore Army Materials Research Conf., Bolton Landing, NY, J.J. Burke and V. Weiss, Plenum Press, New York, NY, 1983, pp. 83–102.

    Chapter  Google Scholar 

  22. D. Shechtman and D. Eylon:Metall. Trans. A, 1978, vol. 9A, pp. 1018–20.

    Article  CAS  Google Scholar 

  23. K.S. Chan, C.C. Wojcik, and D.A. Koss:Metall. Trans., 1981, vol. 12A, pp. 1899–1907.

    Article  Google Scholar 

  24. W.G. Burgers:Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  25. J.C. Williams and G. Luetjering: inTitanium ’80 Science and Technology, Proc. 4th Int. Conf. on Titanium, Kyoto, Japan, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA. 1980, pp. 671–81.

    Google Scholar 

  26. G. Terlinde and G. Luetjering:Metall. Trans. A, 1982, vol. 13A, pp. 1283–92.

    Article  Google Scholar 

  27. K. Tanaka and T. Mura:Acta Metall., 1984, vol. 32, pp. 1731–40.

    Article  CAS  Google Scholar 

  28. D.J. Duquette and M. Gell:Metall. Trans., 1971, vol. 2, pp. 1325–31.

    Article  CAS  Google Scholar 

  29. R.M.N. Pelloux:Trans. ACM, 1969, vol. 62, pp. 281–85.

    CAS  Google Scholar 

  30. C.H. Wells:ASM Symposium: Fatigue and Microstructure, St. Louis, MO, ASM, Metals Park, OH, 1978, pp. 307–33.

    Google Scholar 

  31. L.S. Vesier and S.D. Antolovich:Eng. Fract. Mech., 1990, vol. 37, pp. 753–75.

    Article  Google Scholar 

  32. T. Ericson:Can. Metall. Q., 1979, vol. 18, pp. 177–95.

    Article  Google Scholar 

  33. P. Kofstad:High Temperature Corrosion, Elsevier Applied Science, New York, NY, 1988.

    Google Scholar 

  34. H. Sehitoglu and W. Sun:Eng. Fract. Mech., 1989, vol. 33, pp. 371–88.

    Article  Google Scholar 

  35. G.R. Yoder, L.A. Cooley, and T.W. Crooker: NRL Report No. 8048, 1976.

  36. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Eng. Fract. Mech., 1979, vol. 11, pp. 805–16.

    Article  CAS  Google Scholar 

  37. G.R. Yoder, L.A. Cooley, and T.W. Crooker: inTitanium ’80 Science and Technology, Proc. 4th Int. Conf. on Titanium, Kyoto, Japan, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, pp. 1865–73.

    Google Scholar 

  38. R. Foerch, A. Madsen, and H. Ghonem: Presented at7th World Conf. on Titanium, San Diego, CA, June 6-9, 1992.

  39. J. Weertman:ASM Symp.: Fatigue and Microstructure, St. Louis, MO, ASM, OH, 1978, pp. 279–306.

    Google Scholar 

  40. T. Mura and C.T. Lin:Int. J. Fract., 1974, vol. 10, pp. 284–87.

    Article  Google Scholar 

  41. M. Kikukawa, M. Jono, and M. Adachi: inFatigue Mechanisms, Proc.ASTM-NBS-NSF Symp., Kansas City, MO, May 1978, ASTM STP 675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 234–53.

    Chapter  Google Scholar 

  42. P. Neumann:Acta Metall., 1974, vol. 22, pp. 1155–65.

    Article  CAS  Google Scholar 

  43. P. Neumann:Acta Metall., 1974, vol. 22, pp. 1167–78.

    Article  Google Scholar 

  44. J. Weertman:Int. J. Fract., 1973, vol. 9, pp. 125–31.

    Article  Google Scholar 

  45. S.B. Chakrabortty:Fatigue Fract. Eng. Mater. Struct., 1979, vol. 2, pp. 331–44.

    Article  CAS  Google Scholar 

  46. S.D. Antolovich, A. Saxena, and G.R. Chanani:Eng. Fract. Mech., 1975, vol. 7, pp. 649–52.

    Article  CAS  Google Scholar 

  47. L.F. Coffin, Jr.: inFatigue at Elevated Temperatures, ASTM STP 520, ASTM, Philadelphia, PA, 1973, pp. 5–34.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foerch, R., Madsen, A. & Ghonem, H. Environmental interactions in high-temperature fatigue crack growth of Ti-1100. Metall Trans A 24, 1321–1332 (1993). https://doi.org/10.1007/BF02668200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668200

Keywords

Navigation