Skip to main content
Log in

The effect of environment on the mechanism of Stage I fatigue fracture

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Fatigue crack propagation in nickel-base superalloys at low and intermediate temperatures occurs predominantly in the Stage I mode, along {111} slip planes. Cracking normally starts at an external surface and the Stage I fracture surface has a cleavage appearance. Both of these factors indicate that the environment may play an important role in this mode of propagation. To assess the role of environment in Stage I fracture and to determine the mechanism of failure, fatigue tests were run in air and vacuum on single crystals of low-carbon MAR-M200. The fatigue life at room temperature is significantly greater in vacuum than in air, and the improvement in life increases as the stress range is reduced. Fatigue crack propagation in specimens tested in air and in vacuum is entirely in the Stage I mode, but only the specimens tested at low stress ranges in air have a cleavage appearance. In vacuum and at high applied stress levels in air, fracture surfaces have a matte appearance with fewer fracture steps and river lines. At high magnifications, a dimpled structure is observed on these fracture surfaces. The fatigue life in air can be attributed to a faster rate of crack growth resulting from oxygen adsorption at the crack tip. A model for Stage I fatigue crack propagation in planar slip materials is presented which is an extension of the Griffith-Orowan criterion to cases where localized cleavage occurs at a crack tip in fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Gough and D. G. Sopwith:J. Inst. Metals, 1932, vol. 49, pp. 92–112.

    Google Scholar 

  2. H. J. Gough and D. G. Sopwith:J. Inst. Metals, 1935, vol. 56, p. 55.

    Google Scholar 

  3. H. J. Gough and D. G. Sopwith:J. Inst. Metals, 1946, vol. 72, p. 415.

    CAS  Google Scholar 

  4. J. M. Jacisin:Trans. TMS-AIME, 1967, vol. 239, p. 821.

    CAS  Google Scholar 

  5. W. Engelmaier:Trans. TMS-AIME, 1968, vol. 242, p. 1713.

    Google Scholar 

  6. N. J. Wadsworth and J. Hutchings:Phil. Mag., 1958, vol. 3, p. 1154.

    Article  CAS  Google Scholar 

  7. N. Thompson, N. Wadsworth, and N. Louat:Phil. Mag., 1956, vol. 1, p. 113.

    Article  CAS  Google Scholar 

  8. R. M. N. Pelloux:Trans. ASM, 1969, vol. 62, p. 281.

    CAS  Google Scholar 

  9. H. Shen, S. E. Podlaseck, and I. R. Kramer:Acta Met., 1966, vol. 14, p. 341.

    Article  CAS  Google Scholar 

  10. M. R. Achter:Fatigue Crack Propagation, Spec. Tech. Publ. 415, p. 181, ASTM, Philadelphia, 1967.

    Google Scholar 

  11. G. J. Danek, Jr., H. H. Smith, and M. R. Achter:Proc. Am. Soc. Testing Mater., 1961, vol. 224, p. 1115.

    Google Scholar 

  12. C. Laird and G. C. Smith:Phil. Mag., 1963, vol. 8, p. 1945.

    Article  CAS  Google Scholar 

  13. M. Gell and G. R. Leverant:Trans. TMS-AIME, 1968, vol. 242, p. 1869.

    Google Scholar 

  14. M. Gell and G. R. Leverant:Acta Met., 1968, vol. 16, p. 553.

    Article  CAS  Google Scholar 

  15. M. Gell, G. R. Leverant, and C. H. Wells:Achievement of High Fatigue Resistance in Metals and Alloys, Amer. Soc. Testing Mater., Spec. Tech. Publ. 467, p. 113, 1970.

    Google Scholar 

  16. S. M. Copley and B. H. Kear:Trans. TMS-AIME, 1967, vol. 239, p. 984.

    CAS  Google Scholar 

  17. M. R. Achter:Scripta Met., 1968, vol. 2, p. 525.

    Article  Google Scholar 

  18. J. K. Tien and R. P. Gamble:Met. Trans., 1971, in press.

  19. F. E. Fujita:Fracture of Solids, TMS Conf., vol. 20, p. 678. Interscience Publ., New York, 1963.

    Google Scholar 

  20. D. J. Duquette, M. Gell, and J. W. Piteo:Met. Trans., 1970, vol. 1, p. 3107.

    CAS  Google Scholar 

  21. M. B. McNeil and J. C. Grosskreutz:Phil. Mag., 1967, vol. 16, p. 1115.

    Article  Google Scholar 

  22. A. Kelly, W. R. Tyson, and A. H. Cottrell:Phil. Mag., 1967, vol. 15, p. 567.

    Article  CAS  Google Scholar 

  23. A. R. C. Westwood, C. M. Preece and M. H. Kamdar:Trans. ASM, 1967, vol. 60, p. 723.

    CAS  Google Scholar 

  24. C. A. Stubbington and P. J. E. Forsyth:Metallurgia, 1966, vol. 74, p. 15.

    CAS  Google Scholar 

  25. K. R. L. Thompson and J. V. Craig:Met. Trans., 1970, vol. 1, p. 1047.

    CAS  Google Scholar 

  26. D. I. Golland and P. L. James:Met. Sci. J., 1970, vol. 4, p. 113.

    CAS  Google Scholar 

  27. M. Gell and J. B. Vandersande: Advanced Matl. Res. and Dev. Lab. Pratt & Whitney Aircraft, Middletown, Conn., unpublished research.

  28. P. Beardmore and P.H. Thornton: Ford Sci. Lab., Ford Motor Co., Dearborn, Michigan, private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

D. J. DUQUETTE, formerly with Pratt & Whitney Aircraft, Middletown, Conn.

Materials Engineering and Research Laboratory, Pratt & Whitney Aircraft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duquette, D.J., Gell, M. The effect of environment on the mechanism of Stage I fatigue fracture. Metall Trans 2, 1325–1331 (1971). https://doi.org/10.1007/BF02913355

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913355

Keywords

Navigation