Skip to main content
Log in

Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Rationale and objectives: Gadomer-17 is a new magnetic resonance (MR) contrast medium presently in clinical development. It is a dendritic gadolinium (Gd) chelate carrying 24 Gd ions. This study investigated the pharmacokinetic behavior of this contrast medium. Methods: The pharmacokinetics of Gadomer-17 were investigated in different species (rat, rabbit, dog, monkey) for up to 7 days after intravenous (i.v.) injection of 25–100 μmol/kg body weight. In addition, elimination and biodistribution were evaluated after single i.v. injection of Gadomer-17 in rats. Results: After i.v. injection Gadomer-17 distributes almost exclusively within the intravascular space without significant diffusion into the interstitial space. The volume of distribution (Vc) in the initial or α-phase ranged from 0.04 1/kg (rats, rabbits) to 0.06 1 kg (monkeys) and 0.07 1/kg (dogs), which reflects mainly the plasma volume. The blood/plasma concentration profile was found to be biphasic. The volume of distribution at a steady state is clearly smaller than that of other contrast media, which distribute to the extracellular space. After single i.v. injection in rats, the dendritic contrast medium was rapidly and completely eliminated from the body, mainly via glomerular filtration. No long-term accumulation or retention of the nonmetabolized agent was detectable in organs or tissues. Conclusions: Gadomer-17 is a promising new MR contrast medium that has an intravascular distribution and a rapid renal elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prince MR. Gadolinium-enhanced MR aortography. Radiology 1994;191:155–64.

    PubMed  CAS  Google Scholar 

  2. Prince MR. Grist TM, Debatin JF. 3D contrast MRA. Berlin: Springer, 1997.

    Google Scholar 

  3. Ho KY. Leiner T. de Haan MW. et al. Peripheral MR angiography. Eur Radiol 1999;9:1765–74.

    Article  PubMed  CAS  Google Scholar 

  4. Knoppp MV. von Tengg-Kobligk H, Floemer F, et al. Contrast agents for MRA: future directions. J Magn Reson Imaging 1999;10:314–6.

    Article  Google Scholar 

  5. Bongartz GM, Boos M, Winter K, et al. Clinical utility of contrast-enhanced MR angiography. Eur Radiol 1997;7(Suppl. 5):S178–86.

    Article  Google Scholar 

  6. Brasch RC. Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med 1991;22:282–7.

    Article  PubMed  CAS  Google Scholar 

  7. Harika L, Weissleder R, Poss K. et al. MR lymphography with a lymphotropic Tl-type MR contrast agent: Gd-DTPA-PGM. MRM 1995;33:88–92.

    CAS  Google Scholar 

  8. Adam G, Mühler A. Spuntrup E, et al. Differentiation of spontaneous canine breast tumors using dynamic magnetic resonance imaging with 24-gadolinium-DTPA-cascade-polymer. a new blood-pool agent: preliminary experience. Invest Radiol 1996;31:267–74.

    Article  PubMed  CAS  Google Scholar 

  9. Mühler A. The future of contrast-enhanced magnetic resonance angiography. Are blood pool agents needed? Invest Radiol 1998;33:709–14.

    Article  PubMed  Google Scholar 

  10. Misselwitz B., Platzek J, Radüchel B, et al. Gadofluorine 8: Initial experience with a new contrast medium for interstitial MR lymphography. MAGMA 1999;8:190–5.

    Article  PubMed  CAS  Google Scholar 

  11. Clarke SE. Weinmann H-J, Dai E, et al. Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 2000;214:787–94.

    PubMed  CAS  Google Scholar 

  12. Parmelee DJ, Walovitch RC. Ouellet HS, et al. Prechnical evaluation of the pharmacokinetics. biodistribution, and elimination of MS-325, a blood pool agent for MRI. Invest Radiol 1997;32:741–7.

    Article  PubMed  CAS  Google Scholar 

  13. Lautier RB, Parmelee DJ, Dunham SU, et al. MS-325: albumin-targeted contrast agent for MR angiography. Radiology 1998;207:529–38.

    Google Scholar 

  14. Kellar KE, Fujii DK, Gunther WH, et al. NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 2000; 11:488–94.

    Article  PubMed  CAS  Google Scholar 

  15. Schmiedl U, Ogan M, Paajanen H, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology 1987;162:205–10.

    PubMed  CAS  Google Scholar 

  16. Marchai G, Bosmans H, Van Hecke P, et al. MR angiography with gadopentetate dimegluminepolylysine: evaluation in rabbits. Am J Radiol 1990;155:407–11.

    Google Scholar 

  17. Wang SC, Wikstrom MG, White DL, et al. Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues. Radiology 1990;175:483–8.

    PubMed  CAS  Google Scholar 

  18. Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T, et al. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macro-molecular contrast agent for magnetic resonance imaging. Invest Radiol 1991;26:969–74.

    Article  PubMed  CAS  Google Scholar 

  19. Loubeyre P, Canet E. Zhao S, et al. Carboxymethyl-dextran-gadolinium-DTPA as a blood-pool contrast agent for magnetic resonance angiography: experimental study in rabbits. Invest Radiol 1996;31:288–93.

    Article  PubMed  CAS  Google Scholar 

  20. Roberts HC, Saeed M. Roberts TP, et al. Comparison of albumin-(Gd-DTPA)30 and Gd-DTPA-24-cascade-polymcr for measurements of normal and abnormal microvascular permeabilit. J Magn Reson Imaging 1997;7:331–8.

    Article  PubMed  CAS  Google Scholar 

  21. Dong Q, Hurst DR, Weinmann H-J, et al. Magnetic resonance angiography with Gadomer-17: an animal study original investigation. Invest Radiol 1998;33:699–708.

    Article  PubMed  CAS  Google Scholar 

  22. Weinmann H-J, Ebert W, Misselwitz B, et al. A new dedicated contrast agent for MR angiography. Eur Radiol 1997;7(Suppl.):S196.

    Google Scholar 

  23. International Patent Application: WO97/02051.

  24. Dittmer DS, editor. Biological handbooks: blood and other body fluids. Washington, DC: Federation of American Societies for Experimental Biology, 1961.

  25. Adam G, Neuerburg J, Spuntrup E, et al. Gd-DTPA-eascade-polymer: potential blood pool contrast agent for MR imaging. J Magn Reson Imaging 1994;4:462–6.

    Article  PubMed  CAS  Google Scholar 

  26. Wiener EC, Brechbiel MW, Brothers H, et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 1994;31:1–8.

    Article  PubMed  CAS  Google Scholar 

  27. Corot C, Violas X, Robert P, et al. Pharmacokinetics of three gadolinium chelates with different molecular sizes shortly after intravenous injection in rabbits. Relevance to MR angiography. Invest Radiol 2000;35:213–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misselwitz, B., Schmitt-Willich, H., Ebert, W. et al. Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent. MAGMA 12, 128–134 (2001). https://doi.org/10.1007/BF02668094

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668094

Keywords:

Navigation